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PREFACE 

A previous AGARDograph (No 258, May 1980) dealt with a similar subject to the present one; its title was 'Guidance and 
Control Software'. A quick comparison of titles of papers points out that five or six years later the major concerns of today's 
engineers are the same. The tremendous possibilities of modern processors still hide the difficulties of providing adequate 
software which would be demonstrated as fault-exempt for all possible configurations of input data. 

Most of the papers deal with the reliability problem through various approaches. Two papers concern applications 
directly but all papers give examples of application. It is worthwhile noting that hardware faults are no longer considered. 
However, due to the multiplicity of sensors, the detection of sensors failure would simplify the recovery process if the failure is 
immediately detected; if not, wrong data are sent to the processor(s) and the fault-detection process becomes much more 
complicated and lasts longer. 

External disturbances, such as lightning effect on the behaviour of a computer (it is assumed that the physical protection of 
the hardware works normally) have and will have more importance. This is due to two different causes. The energy of signals 
used in VLSI techniques is always decreasing; indeed the size of the chips is, also, decreasing and the induction due to the 
discharge current (some hundreds of thousand amperes) is decreasing as well; but the connections between sensors and 
computers or between computers remain about the same. Thus the ratio between induction and signal energies increases. 

The second cause is the rapid development of composite materials which cancel the Faraday-shielding effect. Many 
investigations are being carried out at the present time and the type of failure induced on the software execution in a computer is 
studied carefully, both on a theoretical and practical basis. 

Software reliability is a permanent problem. New methods to produce modular high-reliability software will soon give rise 
to a new way of programming computers: they will allow the combining of these modules into a large software of about the same 
degree of reliability. They will also allow re-use of parts of already existing and tested softwares. 

This means that a new AGARDograph on the same subject is very likely in some five years time. 
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COMPUTING SYSTEMS DEPENDABILITY AND FAULT TOLERANCE: 
BASIC CONCEPTS AND TERMINOLOGY 

J.C. Laprie 

LAAS-CNRS 
7, Avenue du Colonel Roche 

Toulouse 
31077 Cedex 

France 

ABSTRACT 

This   paper   provides   a   conceptual   framework   for   expressing   the 
constituents  of dependable computing: 

• the impairments to dependability:  faults, errors,  and failures; 
• the   means   for   dependability:   fault   avoidance,   fault   tolerance, 

fault removal, and fault forecasting; 
• the measures  of dependability: reliability  and availability. 

Emphasis   is   put   on   the   dependability   impairments   and   on   fault 
tolerance.  Informal but precise definitions are given. 

INTRODUCTION 

This paper is aimed at giving informal but precise definitions caracterizing the various 
attributes of computing systems dependability. It is a contribution to the work undertaken within 
the "Reliable and Fault Tolerant Computing" scientific and technical community [Jes 77, Avi 78, 
Ran 78, Car 79, Lap 82, And 81, Sie 82, Cri 85] in order to propose clear and widely acceptable 
definitions for some basic concepts. 

The paper results from an elaboration on [Lap 85, Avi 86]. It proceeds by refinements: 
dependability is introduced as a global concept in a first section. Fault tolerance is then detailed in a 
second section. A glossary is given in annex which recapitulates the terms defined throughout the 
paper. 

The guidelines which have governed this presentation can be summed up as follows: 
• search for the minimum number of concepts enabling the dependability attributes 

to be expressed; 
• use of terms which are identical to —whenever possible— or as close as possible to 

those generally used; as a rule, a term which has not been defined retains its 
ordinary sense (as given by any dictionary); 

• emphasis on integration (as opposed to specialization [Gol 82]). 

In each section, concise definitions are given first, then they are heavily commented in order 
to (attempt to) show their wide applicability. Boldface characters are used when a term is defined, 
italic characters being an invitation to focus the reader's attention. 
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THE DEPENDABILITY CONCEPT 

BASIC DEFINITIONS AND ASSOCIATED TERMINOLOGY 

Dependability is that property of computing systems which allows reliance to be justifiably 
placed on the service it delivers. 

The service delivered by a system is its behavior as it is perceived by its user(s); a user is 
another system (human or physical) which interacts with the former. 

A system failure occurs when the delivered service deviates from the specified service, 
where the service specification is an agreed description of the expected service. The failure 
occurred because the system was erroneous: an error is that part of the system state —with respect 
to the computation process— which is liable to lead to failure. The adjudged or hypothesized cause of 
an error is a fault. 

An error is thus the manifestation of a fault in the system, and a failure is the effect of an error 
on the service. 

Achieving a dependable computing system calls for the combined utilization of a set of 
methods which can be classed into: 

• fault   avoidance: how to prevent, by  construction,  fault  introduction; 
• fault    tolerance:   how  to provide,  by   redundancy,   service   complying   with   the 

specification in spite of faults; 
• fault   removal: how to minimize, by verification, the presence of faults; 
• fault    forecasting:  how to estimate, by  evaluation,  the  presence,   the  creation,   and 

the consequences of faults. 
Fault avoidance and fault tolerance may be seen as constituting dependability procurement: 

how to provide the system with the ability to deliver the specified service; fault removal and fault 
forecasting may be seen as constituting dependability validation: how to reach confidence in the 
system's  ability to deliver the  specified service. 

The life of a system is perceived by Us users as an alternation between two states of the 
delivered  service with respect to the  specified  service: 

• proper   service, where the service is delivered as  specified; 
• improper   service, where the delivered service differs from the specified service. 

The   events   which   constitute   the   transitions   between   these   two   states   are   the   failure   and   the 
restoration   of  service.   Quantifying  the  alternation  between  proper  and  improper  service  leads   to 
the two main measures of dependability: 

• reliability:   a  measure   of  the   continuous    delivery    of   proper    service   —or, 
equivalently, of the time to failure— from a reference initial instant; 

• availability:   a  measure  of  the   delivery   of proper  service  with   respect   to    the 
alternation  of proper and improper service. 

COMMENTS 

1- On the Introduction of Dependability as a Global Concept 

Why should another term be added to an already long list ? Reliability, availability, safety, 
etc. The reasons are basically two-fold: 

• to remedy the existing confusion between reliability in its general meaning (reliable 
system)  and reliability  as  a  mathematical quantity  (system reliability)'; 

• to show that reliability, maintainability, availability, safety, etc. are quantitative 
measures corresponding to distinct perceptions of the same attribute of a system: its 
dependability. 

In regard to the term "dependability", it is noteworthy that from an etymological point of 
view, the term "reliability" would be more appropriate: ability to rely upon. Although dependability 
is synonymous to reliability, it brings in the notion of dependence at a second level. This may be felt 

1 Most  books   having   the   word   "reliability"   in   their  title   actually   deal   with   how   to   evaluate,   measure,   predict   the 

reliability   of  systems,   not   really   with  how  to   build  reliable   systems. 
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as a negative connotation at first sight, when compared to the positive notion of trust as expressed 
by reliability, but it does highlight our society's ever increasing dependence upon sophisticated 
systems in general and especially upon computing systems. Moreover, "to rely" comes from the 
French "relier", itself from the Latin "religare", to bind back: re-, back and ligare, to fasten, to tie. The 
French word for reliability, "fiabilite", traces back to the 12th century, to the word "fiablete" whose 
meaning was "character of being trustworthy"; the Latin origin is "fidare", a popular verb meaning 
"to trust". Simultaneous consideration of the English and French origins for reliability thus leads to 
the (unsurprising) association of two key concepts: ties for trust. 

Finally, it is interesting to note that viewing dependability as a more general concept that 
reliability, availability, etc. and embodying the latter terms, has already been attempted in the past 
(see e.g. [Hos 60]), although with less generality than here, since the goal was to define a measure. 

2- On the Notions of Service and its Specification, and of System 

From its very definition, the service delivered by a system is clearly an abstraction of its 
behavior. It is noteworthy that this abstraction is highly dependent on the application that the 
computer system supports. An example of this dependence is the important role played in this 
abstraction by the time: the time granularities of the system and of its user(s) are generally 
different. 

Concerning specification, what is essential within the present context is that it is a description 
of the service which is agreed upon by two persons or corporate bodies —in fact, legal personnae: the 
system supplier (in a broad sense of the term: designer, builder, vendor, etc.) and its human user(s)2. 
The agreement is necessary in order that the specification can (at least) serve as a basis for 
adjudicating unambiguously whether the delivered service is acceptable or not. What precedes does 
not mean that a specification will not change once established. This would be simple ignorance of the 
facts of life, which imply change. The changes may be motivated by modifying the service 
expectation: modification of functionality, or correction of some undesired features such as 
deficiencies in the agreed specification. Once more, what is important is that the specification is 
(again) agreed upon. It must be stressed that such matters as environment conditions, exposure time 
duration, observability, readiness, etc., can —and should— be captured by an appropriately stated 
specification. 

Up to now, a system has been considered as a whole, emphasizing its externally perceived 
behavior; a definition complying with this "black box" view is: an entity having interacted, 
interacting, or likely to interact with other entities, i.e., with other systems^. The behavior is then 
simply what the system does [Zie 76]. What enables it to do what it does is the structure of the 
system or its organization. Adopting the spirit of [And 81], a system, from a structural ("glassbox") 
viewpoint, is a set of components bound together in order to interact; a component is another 
system, etc. The recursion stops when a system is considered as being atomic: any further internal 
structure cannot be discerned, or is not of interest and can be ignored. The term "component" has to 
be understood in a broad sense: layers^ of a system as well as intralayer components; in addition, a 
component being itself a system, it embodies the interrelation(s) of the components of which it is 
composed. 

Based  on  the preceding view  of system  structure,  the notions  of service and  of its  specification 
apply  equally naturally  to the components^. 

^ The   agreement  may   be   implicit,   e.g.   when   using   off-the-shelf  systems. 

^ Giving   recursive   definitions   is   not   for   recursion's   sake.   The   aim   is   to   emphasize   relativity   with   respect   to   the 
adoted  viewpoint.  So  is  it  for the notion  of system:   a given  system's boundaries  may  vary  depending whether it  is 
viewed  by  its  designer(s),  by  its  user(s),  by  its  maintenance  crew,  etc. 

'^ In   the   sense   of  protocols,   i.e.   a  given   layer  using   the   services   provided   by   lower   layer(s),   including   hardware, 
and   delivering   services   to   the   upper   layer(s). 

5 This    is    especially    interesting    in    the    design    process,    when    off-the-shelf   components,    either   hardware   or 
software —"reusable"  software— are used:  what is  of actual  interest to  the designer is  the  service they  are  able to 
provide,   not   their   detailed   (internal)   behavior. 
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3- On the Notions of Fault, Error, and Failure 

The  sources  of faults  are  extremely  diverse.  The  three  main  viewpoints  according  to  which 
they can be classified are: 

1) the phenomenological causes, which lead to distinguish [Avi 78]: 
• physical   faults,  which are due to adverse physical phenomena, 
• human-made    faults,  which result from human imperfections; 

2) the system boundaries, which lead to distinguish internal faults and external 
faults, the latter resulting from the system's interference with its physical or 
human   environment. 

3) the temporal persistence, which leads to distinguish: 
• permanent    faults,  which  are irreversible  structural  states, 
• temporary   faults, who do not act longer than a certain maximum time. 

The first two viewpoints lead to four classes of faults: 
• physical internal faults, due to physico-chemical disorders (threshold changes, short 

circuits, open circuits, etc.); 
• physical external faults, due to environmental perturbations (electromagnetic 

perturbations,  radiations,   temperature,   vibrations,  etc.); 
• human-made internal faults, or design faults, resulting from imperfections 

committed either a) during the initial design of the system (broadly speaking, from 
requirement specification to implementation) or during subsequent modifications, or 
b) during the establishment of the procedures for operating or maintaining the 
system; 

• human-made external faults, resulting from the violation of operating or 
maintenance   procedures. 

It could be argued that introducing the phenomenological causes in the classification criteria of 
faults may lead recursively "a long way back", e.g. why are programmers doing mistakes? why are 
integrated circuits failing? The very notion of fault is arbitrary, and is in fact a facility provided for 
stopping the recursion. Hence the definition given: adjuged or hypothesized cause of an error. This 
cause may vary depending upon the adopted viewpoint: fault tolerance mechanisms, maintenance 
engineers, repair shop, designer, semiconductor physicist, etc. In our view, recursion stops at the 
cause which is intended to be avoided or tolerated. This view provides consistency to the distinction 
between human-made and physical faults: a computing system is a human artifact and as such any 
fault in it or affecting it is ultimately human-made since it represents human inability to master all 
the phenomena which govern the behavior of a system. In an absolute sense, a distinction between 
physical faults and human-made faults (especially design faults) may be considered unnecessary; 
however, this distinction is of importance when considering the (current) methods and techniques 
for procuring and validating dependability. If the recursion mentioned above is not stopped, then a 
fault is nothing other than the consequence of a failure of a system that has delivered (including the 
designers)   or is now delivering a service to the considered system. 

Examples of the preceding discussion follow: 
• a design fault is consecutive to a designer failure; 
• a physical internal fault is due to a hardware component failure, which is itself the 

consequence of (an) error(s) at the electrical or electronical level, in turn originating 
from the hardware production, or from —the limits of— our knowledge of the 
semiconductor physics: the "physics reliability" community rarely characterizes 
failures  as  "sudden  and  nonpredictable"; 

• a physical or human-made external fault is in fact a design fault: the inability to 
foresee all the situations the system will be faced with during its operational life, or 
the refusal of considering some of them (e.g. for economic reasons); for instance in 
the case of a transient fault under the form of an electromagnetic perturbation: is it 
an external fault or a design fault, i.e. the lack of adequate shielding? 

The  temporal persistence viewpoint deserves the  following  comments: 
1) Internal faults can be permanent or temporary, whereas external faults are 

generally  temporary. 
2) Permanent internal faults are generally due to failures, either of a hardware 

component or of a designer. 
3) Temporary physical  external  faults  are  often  termed  as  transient   faults. 
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4) Temporary internal faults are often termed as intermittent faults; those faults 
result from the presence of rarely occurring combinations of conditions; examples 
are a) "pattern sensitive" faults in semiconductor memories, change in parameters 
of a hardware component (effect of temperature variation, delay in timing due to 
parasitic capacitance, etc.), or b) situations —affecting either hardware or software—• 
occurring when system load comes above a certain level, such as marginal timing 
and synchronisation. In fact, the term "fault" is in such cases is actually an 
abstraction for fault  conditions. 

The  table  of Figure   1   summarizes  the classes  of faults  with respect to the three viewpoints 
considered. 

Phenomenological 
Cause 

System 
Boundary 

Temporal 
Persistence 

Physical Human-made Internal External Permanent Temporary 

•                                           •                                            • 
1                      1                      1 

•                                           • • 

•                                                                 * • 

•                    • • 

•                    • • 

•                                          • • 

Figure  1 - Fault classes 

Concerning human-made faults, an additional viewpoint for their classification is to consider 
whether they are accidental or intentional. Up to now, only accidental faults have been —implicitly— 
dealt with. Intentional faults, either design faults ("Trojan horses") or interaction faults (intrusions) 
lead directly to security. However, the corresponding methods and techniques will not be addressed 
in this paper. 

An error was defined as being liable to lead to failure. Whether or not an error will actually 
lead to a failure depends on two major factors: 

1) The system composition, and especially the nature of the existing redundancy: 
• intentional redundancy (introduced to provide fault tolerance) which is 

explicitly intended to prevent an error from leading to failure, 
• unintentional redundancy (it is practically difficult if not impossible to 

build a system without any form of redundancy^) which may have the 
same —unexpected— result as intentional redundancy. 

2) The definition of a failure from the user's viewpoint: what is a failure for a given 
user may be a bearable nuisance for another one. Examples are a) accounting for 
the user's time granularity: an error which "passes through" the system-user(s) 
interface may or may not be viewed as a failure depending on the user's time 
granularity, b) the notion of "acceptable error rate" —implicitly before considering 
that a failure has occurred— in data transmission. 

Based on the given definition of a system from the structural viewpoint, the discussion of 
whether "failure" applies to a system or a component is simply irrelevant, since a component is itself 
a system. When atomic systems are dealt with, the notion of an "elementary" failure comes 
naturally. 

6 A   classical   problem   in   hardware   testing   is   the   removal   of  such   "false   redundancies",   whose   effect   may   be   to 
mask  errors,   and   as   such  to  make  more   complicate  the  test  patterns  generation.more  complicate. 
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The structural view of a system enables fault pathology to be made more precise. The creation 
and manifestation mechanisms of faults, errors, and failures may be summarized as follows: 

1) A fault may be dormant or active; a fault is active when it produces an error. A 
fault may cycle between its dormant and active states. Physical faults can directly 
affect the physical components only, whereas human-made faults may affect any 
component. 

2) An error may be latent or detected, either by a detection algorithm or mechanism 
within the component. An error may, and in general does, propagate^ from one 
component to another; by propagating, an error creates other —new— error(s). An 
error may thus originate from: 

• activation of a dormant fault within the same component, 
• propagation   of   an   error   within   the   same   component   or   from   another 

component. 
3) A component failure occurs when an error affects the service delivered by the 

component as a response to request(s) from another component. A component 
failure may result in a fault for the component(s) to whom it delivers service. 

These mechanisms enables the "fundamental chain" to be completed: 

• • • —>   failure    —>     fault    —>     error    —>     failure   —> ... 

A given fault in a given component may result from different possible sources. For instance, a 
f^iult in a physical component —e.g. stuck at ground voltage— may result from: 

• a physical failure (e.g. caused by a threshold change); 
• an error caused by a design fault —e.g. faulty microinstruction— propagating "top- 

down" through the layers and causing a short between two circuit outputs for a 
duration long enough to provoke a short-circuit having the same consequence as the 
threshold change. 

In conclusion, we observe that faults, errors, and failures are all undesired circumstances. 
Assignment of the terms fault, error, failure simply takes into account current usage: a) fault 
avoidance, tolerance, and diagnosis, b) error detection and correction, c) failure rate. 

It has to be noted that the labels "fault" and "error" are sometimes interchanged, as in [lEE 82]. 
The assigment adopted here acknowledges the long-time usage of the coding theory. 

4- On Fault Avoidance, Tolerance, Removal, and Forecasting 

All the "how to's" which appear in the basic definitions are in fact goals which cannot be fully 
reached, as all the corresponding activities are human activities, and thus imperfect. These 
imperfections bring in dependencies which explain why it is only the combined utilization of the 
above methods —preferably at each step of the design and implementation process— which can lead 
to a dependable computing system. These dependencies can be sketched as follows: in spite of fault 
avoidance by means of design methodologies and construction rules (imperfect in order to be 
workable), faults occur; hence the need for fault removal; fault removal is itself imperfect, as are the 
off-the-shelf components of the system, hence the need for fault forecasting; our increasing 
dependence on computing systems brings in fault tolerance, which in turns necessitates further 
construction rules, and thus fault removal, fault forecasting, etc. 

It must be noted that the process is even more recursive than it appears from the above: current 
computer systems are so complex that their design and implementation need computerized tools in 
order to be cost-effective (in a broad sense, including the capability of succeeding within an 
acceptable time scale). These tools have themselves to be dependable, and so on. 

The preceding reasoning explains why in the given definitions fault removal and fault 
forecasting are gathered into validation. Validation is often limited to what has been termed as 
verification; in that case these two terms are often associated, e.g. "V and V" [Boe 79], the distinction 
being related to the difference between "building the system right" (related to verification) and 
"building the right system" (related to validation). What is proposed is simply an extension of this 
concept:  the answer to the question  "am I building  the right system?"   being complemented by  "for 

'' The  non  reflexive  form  of  "propagate"   is  intentionally  used:   an  error does  not  propagate  itself,  it just  propagates. 
Altliougli  "propagate"  was  retained due to  its  wide  use,  beter words  would probably  be  "spread",  or  "breed". 



1-7 

how long will it be right?"^. In addition, fault removal is usually closely associated with fault 
avoidance, both constituting fault prevention. Besides highlighting the need for validating the 
procedures and mechanisms of fault tolerance, considering fault removal and fault forecasting as two 
constituents of the same activity —validation— is of great interest in that it enables a better 
understanding of the notion of coverage, and thus of an important problem introduced by the 
above recursion: the validation of the validation, or how to reach confidence in the methods and 
tools used in building confidence in the system. Coverage refers here to a measure of the 
representativity of the situations to which the system is submitted during its validation with respect 
to the actual situations it will be confronted with during its operational life. 

5- On the Measures of Dependability 

Only two basic measures (or "metrics") have been considered, reliability and availability. 
Usually, a third one, maintainability is also considered: a measure of the continuous delivery of 
improper service, or equivalently, of the time to restoration. This measure is no less important than 
those previously defined; it was not introduced in the basic definitions because it may, at least 
conceptually, be deduced from the other two. It is noteworthy that availability encapsulates both the 
frequency of failure and the duration of proper service at each alternation of proper-improper 
service. 

The term "probability" has intentionally been not employed in the given definitions, so as to 
reinforce the significance of the defined measures. As the considered events are non-deterministic, 
random variables are associated with them, and the measures which are dealt with are probabilities. 

A system may not, and generally does not, always fail in the same way. This immediately 
brings in the notion of the consequences of a failure upon the other systems with which the 
considered system is interacting, i.e. its environment. Several failure modes can generally be 
distinguished (in the specification), ordered according to the increasing severity of their 
consequences, i.e. their criticality. A special case of great interest is that of systems which exhibit 
two failure modes (or whose failure modes can be grouped into two classes) whose criticalities differ 
considerably: 

• benign failures, where the consequences are of the same order of magnitude 
(generally in terms of cost) as those of the service delivered in the absence of 
failure; 

• malign or catastrophic failures, where the consequences are non 
commensurable with those of the service delivered in the absence of failure. 

Through grouping the states of proper service and improper service subsequent to benign failures 
into a safe state (in the sense of being free from damage, not from danger), the generalization of 
reliability leads to an additional measure: a measure of continuous safeness, or equivalently, of the 
time to catastrophic failure, i.e., safety^. A direct generalization of the availability, i.e. a measure of 
safeness with respect to the alternation of safeness and improper service after catastrophic failure, 
would not provide a significant measure. When a catastrophic failure has occurred, the consequences 
are generally so important that system restoration is not of prime importance for —at least— the two 
following reasons: 

• it comes second to repairing (in the broad sense of the term, including legal aspects) 
the consequences of the catastrophe; 

• the lengthy period prior to being allowed to operate the system again (investigation 
commissions) would lead to meaningless numerical values. 

A "hybrid" reliability-availability-type measure has thus to be defined: a measure of proper 
service delivery with respect to the alternation of proper service and improper service after benign 
failure. This measure is of interest in that it provides indeed a quantification of the system 
availability before occurrence of a catastrophic failure, and as such enables quantification of the so- 
called "reliability- (or availability-)  safety tradeoff". 

^ Validation  stems   from   "validity",  which  encapsulates  two  notions: 
• validity  at  a  given moment,  which  relates  to  fault removal; 
• validity   for  a   given   duration,   which   relates  to   fault  forecasting. 

^ It   is   not      the   author's   intention   to   contribute   to   the   controversy   whether   safety   includes   reliability   or   vice- 
versa:  the  proposed  answer  is  that  both     are  attributes  of dependability. 



SUMMARY 

What has been presented in this section actually constitutes an attempt to build a taxonomy 
of dependable computing. The concepts introduced may be gathered into three main classes of 
attributes: 

• the impairments to dependability, which are undesired —but not unexpected— 
circumstances causing or resulting from un-dependability (whose definition is very 
simply derived from the definition of dependability: reliance cannot, or will not, be 
any longer justifiably placed on the service); the impairments are the faults, errors, 
and failures. 

• the means/or dependability, which are the methods, tools, and solutions enabling 
a) the system to be provided with the ability to deliver a service on which reliance 
can be placed (dependability procurement by fault avoidance and fault tolerance), 
and b) the user to reach confidence in this ability (dependability validation by fault 
removal and fault forecasting); 

• the measures of dependability, which enable the service quality resulting from the 
impairments and the means opposing to them to be appraised; the two main 
measures  are reliability and  availability. 

The dependability constituents can be represented under the form of a tree as in figure 2. 

IH/ID A IDHfirhlTC 

r- FAULTS 

- ERRORS 

- FAILURES 

pFAULT AVOIDANCE 
pPROCUREMENT- 

•-FAULT TOLERANCE 

rFAULT REMOVAL 
LVALIDATION   — 

■-FAULT FORECASTING 

pRELIABILITY 

-AVAILABILITY 

nporunARii ITV 

1  mLAoUllLO 

Figure 2 - The constituents of dependability 

FAULT TOLERANCE 

BASIC DEFINITIONS 

Fault tolerance is carried out by error processing and by fault treatment [And 81]. Error 
processing is aimed at removing errors from the computational state, if possible before occurrence 
of failure; fault   treatment is aimed at preventing (a) fault(s) to be activated —again. 

Error processing    may take on two forms: 
•   error    recovery,  where  an  error-free  state  is  substituted  for  the  erroneous  state; 

this substitution may take on two two forms [And 81]: 
- backward error recovery, where the erroneous state transformation 

consists of bringing the system back to an already occupied state prior to 
error occurrence; it involves the establishment of recovery points, which 
are points in time during the execution of a process for which the then 
current state may subsequently need to be restored; 
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- forward error recovery, where the erroneous state transformation 
consists of finding a new state, which was never occupied before, or which 
was not occupied since the same error occurred; 

• error    compensation,   where   the   erroneous   state   contains   enough   redundancy   to 
enable the delivery of an error-free service from the erroneous (internal) state. 

When error recovery is employed, the erroneous state needs to be (urgently) identified as being 
erroneous prior to being transformed, which is the purpose of error detection. On the other hand, 
compensation may be applied systematically, even in the absence of error(s), then providing fault 
masking. 

The first step in fault treatment is fault diagnostics, which consists in determining the 
cause(s) of error(s), in terms of both location and nature. Then come the actions aimed at fulfilling 
the main purpose of fault treatment: preventing the fault(s) from being activated again, thus aimed 
at making it(them) passive, i.e. fault passivation. This is carried out in removing the component(s) 
identified as being faulty from further execution processes. If the system is no longer capable of 
delivering the same service as before, then a reconfiguration may take place. 

Fault treatment is generally complemented by maintenance (except of course for non- 
maintained systems), aimed at removing faults. Maintenance actions can be put into two classes: 

• corrective     maintenance,   aimed   at  removing   those   faults   which   have   produced 
detected  errors, 

• preventive    maintenance,  aimed at removing faults before they are activated. 

COMMENTS 

1- On the Tolerated fault classes 

The preceding definitions apply to physical faults as well as to design faults: the class(es) of 
faults which can actually be tolerated depend(s) on the fault hypothesis which is being considered in 
the design process, and thus depend on the independency of redundancies with respect to the 
process of fault creation and activation. An example is provided when considering tolerance to 
physical faults and tolerance to design faults. A (widely used) method to attain fault tolerance is to 
perform multiple computations through multiple channels. When tolerance to physical faults is 
foreseen, the channels may be identical, based on the assumption that hardware components fail 
independently; such an approach is not suitable for the tolerance to design faults where the channels 
have to provide identical services through independent designs and implementations [Elm 72, 
Ran 75,  Avi  78], i.e. through design   diversity [Avi 84]. 

Fault tolerance is (also) a recursive concept: it is essential that the mechanisms aimed at 
implementing fault tolerance be protected against the faults which can affect them. Examples are 
voter replication, self-checking checkers [Car 68], "stable" memory for recovery programs and data 
[Lam 81]. 

2- On Error Processing and Fault Treatment 

The goal of error processing is the preservation of data integrity, which in turns requires that 
the data contained in the components involved in this preservation to be consistent [Wen 78, Gra 78, 
Pea 80]. 

The knowledge of some system properties may limit the necessary amount of redundancy. 
Examples of these properties are regularities of structural nature: error detecting and correcting 
codes, robust data structures [Tay 80], multiprocessors and local area networks [Hay 76]. The fault 
that are tolerated are then dependent upon the properties which are accounted for, since they 
directly intervene in the fault hypotheses taken into account in the design process. 

The association into a component of its functional processing capability together with error 
detection mechanisms leads to the notion of self-checking component, either hardware or 
software; one of the important benefits of the self-checking component approach is the ability to a 
clear definition of the error confinement areas. The implementation of self-checking components 
through   the   multiple  channel   approach   leads   to  the   association  of  two  components  delivering  the 
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same service and of a comparison mechanism; this —widely used— form is often termed as duplexing 
and  comparing^C. 

Tolerance to temporary faults does not necessitate fault treatment, since error recovery 
should in this case directly remove the effects of the faults, which has itself vanished. However, 
distinguishing a permanent fault from a temporary fault is a complex task, since different fault 
classes may lead to very similar errors, and it can be said that declaring whether the cause of an 
error is a permanent or temporary fault is in fact subjective to some extent, including the fact that a 
fault may be declared as temporary if the fault diagnostics is unsuccessful. 

In addition, 
a) fault passivation is in fact a voluntary system change, which, as  such, will lead to 

lowering  the  system  available redundancy; 
b) some faults, even permanent, have a likelihood of recurring which is low enough, or 

their consequences are bearable enough,  so that fault treatment is not undertaken. 
As a consequence, fault treatment generally does not immediately follow error processing; the 

delay may be determined by either logging a certain number of error occurences, or allowing a 
certain lapse of time during which the error(s) should not occur again. Another consequence, from 
the terminology viewpoint, is that temporary faults are often termed as soft faults, with respect to 
the fact that fault treatment is not necessary in their case; permanent faults are conversely termed 
as hard, or solid,  faults. 

Backward and forward error recovery are not exclusive: backward recovery may be 
attempted first; if the error persists, forward recovery may then be attempted. In forward recovery, 
it is necessary to assess the damage caused by the detected error, or by errors propagated before 
detection; damage assessment can —in principle— be ignored in the case of backward recovery, 
provided that the mechanisms enabling the transformation of the erroneous state into an error-free 
state have not been affected [And 81]. The tolerance to temporary faults may lead to a special form 
of forward recovery: the off-line (with respect to the current computation) restoration of the data 
corrupted by the temporary fault(s). In such a case, forward recovery is used in conjunction with 
possibly other forms of error processing; examples are provided by a) reading and rewriting the 
contents of a memory possessing an error correcting code for tolerating the effects of alpha particles, 
and b) in a triad of processors with a majority vote, restoring the data of one processor —affected by 
an electro-magnetic perturbation— from the data of the other two processors. 

In fault masking, the systematic application of compensation ensures in itself that any error 
(provided of course it corresponds to the fault hypothesis of the design process) has been eliminated. 
However, this can at the same time correspond to a redundancy decrease which is not known. So, 
practical implementations of masking generally involve error detection, which enables compensation 
to be applied again, in order to check whether fault treatment has to be undertaken or not". 

From the preceding discussion, it appears that the distinguished forms of error processing 
—backward and forward recovery, compensation— are in fact primitives which may be arranged in a 
wide variety of architectures. 

Some previous definitions of compensation consider it within the context of interaction faults 
in distributed systems only, where one component provides to another component supplementary 
information intended to correct the effects of information it had previously sent (see e.g. [Ran 75]). 
The given definition clearly embodies more classical situations such as error correcting codes or 
majority   votingi^. 

The operational time overhead necessary for error processing may differ widely according to 
the   adopted  error  processing  form.   Two  extremes  from  this  viewpoint  are   a)  error  detection  and 

1" Utilization of such self-checking components for fault tolerance may be coupled with both forms of error 
recovery: 

• backward   recovery   when   the   self-checking   components   are   processing   different   tasks; 
• a —limiting— form of forward recovery when the self-checking components are processing identical 

tasks: switching from one component to another after error detection if the error has affected the 
component  which was  active  from the user viewpoint. 

' ^ Thanks to the masking effect, this second application of compensation may be performed within an acceptable 
delay, off-line with respect to the current computation which was in progress when the error became 
effective. 

12 It is hoped that the essential idea has been captured, its applicability being a matter of definition of system 
boundaries. 
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backward recovery,  and b)  fault masking:  the  latter provides  a time overhead which is  much  shorter 
than the former. In addition: 

• in error detection and backward recovery, the time overhead is longer upon error 
occurrence than before: it is then related to the provision of recovery points, thus in 
fact to preparing for effective error processing; 

• in fault masking, the time overhead is always the same. 
This remark 

a) is of high practical importance in that it often conditions the choice of the adopted 
fault tolerance strategy with respect to the user time granularity; 

b) has introduced a relation between operational time overhead and structural 
redundancy; more generally, a redundant system always provides redundant 
behavior, incurring at least some operational time overhead; the time overhead 
may be small enough not to be perceived by the user, which means only that the 
service is not redundant; an extreme opposite form is "time redundancy" 
(redundant behavior obtained by repetition) which needs to be at least initialized 
by a structural redundancy, limited but existing; roughly speaking, the more the 
structural redundancy, the less the time overhead incurred. 

Of importance is the signalling of a component failure to its users. This may be accounted for 
within the framework of exceptions [Cri 80, And 81]. Exception handling facilities provided in some 
languages may constitute a convenient way for implementing error recovery , especially in forward 
recovery for well defined and anticipated situations. However, the use of the term "exception", due 
to its origin of coping with exceptional situations —not only errors— should be carefully used in the 
framework of fault tolerance: it could appear as contradicting the view that fault tolerance has to be 
a natural attribute of computing systems, taken into consideration from the very initial design 
phases, and not an "exceptional" attribute. 

3- On Maintenance 

The frontier between fault treatment and corrective maintenance is relatively arbitrary; 
especially, corrective maintenance may be considered as an —ultimate— means of achieving fault 
tolerance. The given definitions were adopted for the ability to embody: 

• on-line or off-line maintainable fault tolerant systems,  as well  as  non  fault tolerant 
systems 

• preventive as well as corrective maintenance. 
Especially, the faults whose removal is the aim of preventive maintenance can be a) physical 

faults having occurred since the last preventive maintenance actions, or b) design faults having led 
to effective errors in other similar systems. 

It is noteworthy within the present context that the current discussions about the irrelevance 
of the use of the term "maintenance" when applied to software simply forget the etymology of the 
word: in the Middle Age, maintenance was designating the actions performed in order to keep an 
army in a state of giving battle, thus including the so-called "adaptative" and "perfective" forms of 
maintenance. The association of maintainance with repairing hardware is actually a (recent) 
deviation; associating "to maintain" with the notion of service would enable this etymological 
meaning to be revived, while at the same time removing the very source of discussion. 

CONCLUSION 

The contents of this paper are devoid of any "Table of Stone" pretension: the efforts 
undertaken are only worthwile in so far as they manage to embody as wide as possible a range of 
concepts and therefore those efforts have to keep abreast of technology. Naturally, the associated 
terminology effort is not an end in itself: words are only of interest in so far as they transmit ideas, 
subject them to criticism, and enable viewpoint to be shared. 
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The independence of the basic definitions with respect to any fault class should facilitate the 
bringing together of activities which are often considered as separate, such as: 

• VLSI testing and software testing; 
• hardware reliability (with respect to physical faults) and software reliability (with 

respect to design faults), to say nothing of hardware reliability with respect to 
design faults; 

• computer  system  security,  safety,  and reliability. 
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GLOSSARY 

Warning:    this   glossary   is   provided   as   an   aid   for   reading   the   paper.   D o not    consider   it 
independently   of the  paper. 

Availability         Measure   of  proper   service  delivery   with  respect   to   the   alternation 
proper-improper   service. 

Coverage        Measure  of the representativity  of the  situations  to  which  a  system 
is   submitted   during   its   validation   with   respect   to   the   situations   it 
will be confronted with during its operational life. 

Dependability     Property   of   a   computing   system   which   allows   reliance   to   be 
justifiably placed on the service it delivers. 

Impairments   to   ~      1) Undesired,  but not unexpected,  circumstances  causing  or resulting 
from   un-dependability. 

2) Faults, errors, and failures 
Means for ~      1) Methods and techniques enabling a) to provide a system with the 

ability to deliver a service on which reliance can be placed, and b) 
to reach confidence in this ability. 

2) ~ Procurement and - validation. 
Measures    of-    1) Attributes    enabling    the    service    quality    resulting    from    the 

impairments and the means opposing to them to be appraised. 
2) Reliability,  availability,  maintainability,  safety. 

~   Procurement    1) Methods   and   techniques   intended   to  provide   a   system   with   the 
ability to deliver the specified service. 

2) Fault avoidance and fault tolerance. 
Un ~    Property  of  a  computing   system   such  that  reliance  cannot,  or  will 

not, any more be justifiably placed on the service it delivers. 
~   Validation       1) Methods   and   techniques   intended   to   reach   confidence   in   a 

system's  ability to deliver the  specified service. 
2) Fault removal and fault forecasting. 

Design    diversity        Approach  for  the  production  of  systems  providing  identical  services 
from   independent   designs   and  implementations. 

Error     1) Part of system state which is liable to lead to failure. 
2) Manifestation of a fault in a system. 
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Backward   ~   Recovery     Form   of   error   recovery   where   the   erroneous   state   transformation 
consists of bringing the system back to an already occupied state. 

~   Compensation       Form   of   error   processing   when   erroneous   state   contains   enough 
information to enable proper service delivery. 

~ Detection       The action of identifying that a system sate is erroneous. 
Detected   ~     Error identified  as  such  by  a detection  algorithm  or  mechanism,  or 

noted by the user. 
Forward   ~   Recovery...    Form   of  error   recovery   where   the   erroneous   state   transformation 

consists  of finding  a  new,  never  occupied,  state,  or  which  was  not 
occupied since the same error occurred. 

Latent -     Undetected error. 
~ Processing         The actions taken in order to eliminate an error from a system. 
~   Recovery       Form  of error processing  where  an  error-free  state is  substituted  to 

an erroneous  state. 
Failure     1) Deviation of the delivered service from the specified service. 

2) Manifestation of an error on the delivered service. 
3) Transition   from   proper   service   delivery   to   improper   service 

delivery. 
Benign   ~     Failure  whose consequences  are  of the  same order of magnitude  as 

those of proper service delivery. 
Catastrophic   ~     Failure   whose   consequences   are   not   commensurable   with   those   of 

proper  service  delivery. 
Fault     1) Adjudged or hypothesized cause of an error. 

2) Error cause which is intended to be avoided or tolerated. 
3) Consequence of the failure of a system which has interacted or is 

interacting  with the considered system. 
Active ~    Fault producing an error. 
-- Avoidance         Methods  and techniques  aimed at preventing  fault introduction. 
Design ~      Human-made   fault. 

~   Diagnostics      The   action   of  determining   the   cause   of  an   error   in   location   and 
nature. 

Dormant -     Fault not activated by  the computation process. 
External -     Fault resulting  from the  system's interference with its environment. 
Hard ~   Synonimous of permanent fault. 
~   Forecasting      Methods   and   techniques   aimed   at   estimating   the   presence,   the 

creation, and the consequences of faults. 
Human-made ~      Consequence of human imperfection. 
Intermittent   -     Temporary  internal  fault. 
Internal ~     Fault inside a system. 
~ Masking       Result of applying error compensation  systematically. 
~ Passivation         The actions taken in order that a fault cannot be activated. 
Permanent  ~     Irreversible   structural   state. 
Physical ~     Fault resulting  from physico-chemical  disorders. 
~ Removal       Methods  and techniques  aimed at minimizing  the presence of faults. 
Soft ~     Synonimous of temporary fault. 
~   Tolerance       Methods  and  techniques   aimed  at  providing  service  complying  with 

the specification in spite of faults. 
Temporary  -      Fault whose action is not longer than a certain maximum time. 
-   Treatment        The  actions  taken  in  order  to remove  a faulty component  from  the 

computation process. 
Transient -      Temporary  physical  external  fault. 

Maintainability      1) Measure of continuous improper service delivery. 
2) Measure of the time to restoration. 

Maintenance      Actions undertaken in order to remove faults. 
Corrective  ~    Maintenance    aimed    at    removing    faults    which    have    produced 

detected errors. 
Preventive   ~      Maintenance aimed at removing faults before they are activated. 
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Recovery   point        Point  in  time  during  the  execution   of a  process  for  which  the  then 
current  state  may  subsequently  need to  be restored. 

Reliability     1) Measure of continuous proper service delivery. 
2) Measure of the time to failure. 

Safety        1) Measure   of   continuous   delivery   of   either   proper   service   or 
improper service after benign failure. 

2) Measure of the time to catastrophic failure. 
Self-checking     component      Component  comprising   error  detection  mechanisms   associated  to  its 

functional part. 
Service     System behavior as perceived by the system user. 

Proper ~      Service delivered as specified. 
~ Restoration         Transition from improper to proper service delivery. 
Improper ~     Service delivered differently from specified. 
-Specification         Agreed description  of the expected  service. 

System        1) Entity   having   interacted,   interacting   ,   or   able   to   interact   with 
other entities. 

2) Set of components bound together in  order to interact. 
Atomic   -    System  whose  internal   structure  cannot  be  discerned,   or  is   not  of 

interest and can be ignored. 
~ Behavior       What a system does. 
~ Component        Another system. 
~   Environment      The   other   systems   interacting   or   interfering   with   the   considered 

system. 
~ Structure      What enables a system to do what it does. 
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THE APPLICATION OF EMULATION TECHNIQUES 

IN THE ANALYSIS OF HIGHLY RELIABLE, 

GUIDANCE AND CONTROL COMPUTER SYSTEMS 

Gerard E. Migneault 
Langley Research Center 
Hampton, Virginia, USA 

Summary 

Emulation techniques can be a solution to a difficulty that arises in 
the analysis of the reliability of highly reliable guidance and control 
computer systems for future commercial aircraft. 

This paper first describes the difficulty, viz., the lack of 
credibility of reliability estimates obtained by analytical modelling 
techniques.  The difficulty is shown to be an unavoidable consequence of: 
(1) a reliability requirement so demanding as to make system evaluation by 
use testing infeasible, (2) a complex system design technique, fault 
tolerance, (3) system reliability dominated by errors due to flaws in the 
system definition, and (H)  elaborate analytical modelling techniques whose 
precision outputs are quite sensitive to errors of approximation in their 
input data.  Use of emulation techniques for "pseudo-testing" systems to 
evaluate bounds on the parameter values needed for the analytical 
techniques is then discussed. Finally, several examples of the application 
of emulation techniques are described. 

Introduction 

About a decade ago, designs for fault tolerant computer systems began to surface In anticipation of 

the guidance and control computing needs of future civil aircraft (e.g., [Bjurman, B. E. et al., 1976], 

[Hopkins, A. L. et al., 1978], [Wensley, J. H. et al., 1978]).  The reasons were clear and remain so.  On 

the one hand, demand for safety imposes an elevated, acceptable level of reliability on any system whose 

failure can cause fatalities; on the other hand, there is uncertainty about the quantitive relationship 

between subtle malfunctions of an aircraft's guidance and control computing system and the probability of 

catastrophic consequences involving the aircraft.  As a result, any specification of a minimally 

acceptable level of reliability for an aircraft's computing system remains problematical and so, to be 

generally acceptable, must be conservatively elevated.  Credibly conservative levels, however, preclude 

the use of conventional (i.e., fault intolerant) systems because of limited levels of reliability of 

available components. 

In early studies, for example, requirements for an acceptable level of reliability of the systems 

and associated components were inferred from the expression "extremely improbable" which appeared in 

regulatory documentation pertaining to safety in commercial transport aircraft (FAA, 1970).  The 

following, variously worded, Informal statements indicate the range of interpretations of the expression 

in several studies commissioned by NASA: 

"Thus we have a reliability requirement of 10-° per hour of operation for a level 1 or 
level 2 function' with no Internal or external backup ..." [Ratner, R. S. et al., 1973] 

"... a number less than or equal to 1x10-' has been Imposed ... to represent the 
probability of an event designated as extremely Improbable.  ...  Loss of the 
CCV/FBW^ function, given a fault-free system at dispatch, shall be extremely 
Improbable." [Bjurman, B. E. et al., 1976] 

"... the computer's failure rate will be designed below 10-' failures per hour in 
flights of up to ten hours duration, with a preferred goal of 10-'° failures per 
hour." [Smith, T. B. et al., 1978] 

"... the extrapolated failure of the design in context with production system 
application shall not exceed 10-' computer-related system failures in flights up to 
ten hours."(sic) [NASA, 1978] 

'/  Levels pertain to orlticality of functions, levels 1 and 2 being most critical. 

^/  CCV/FBW = control configured vehicle / fly by wire. 
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Current regulatory agency documentation is somewhat more explicit in associating "extremely improbable" 

with the probability value 10-', but otherwise there has been little change [FAA, 1982].  And one can 

expect that there will not be much change in the future.  Thus, the following, informal statement, which 

is more or less an average of the cited interpretations, will likely remain approximately the requirement 

for reliability for a system crucial to flight: 

the probability that the system will fail during a flight of up to ten hours duration will 

be less than approximately 10-'. 

The understanding is implicit that the requirement applies anew to each flight and that, therefore, a 

renewal process is being considered.  (In military, combat aircraft, requirements for reliability of 

computing systems hover about the value 1-10-' for a mission — still beyond the sure reach of computing 

systems that are intolerant of faults). 

If one ignores failures due to causes external to systems or to inadequately or incorrectly designed 

and implemented systems, one can determine that, in order to satisfy the reliability requirement above, a 

computer system constructed of devices (that may in turn be constructed of more basic components) with 

independent failure distributions and constant failure rates would require, if it were intolerant of the 

failure of any of its constituent devices, a mean time to failure (MTTF) of approximately ten billion 

(10'°) hours for the least reliable of the devices.  Such a system is unlikely to see the light of day in 

the near future, to say the least, since realistic, available devices such as processors, memories, etc., 

from which systems can be constructed, do not have such lengthy MTTFs; values in the range from 10^ to 

10' are more reasonable.  Consequently, computer systems intended to satisfy the reliability requirement 

have been designed to tolerate failures. 

Consequences of Fault Tolerance 

The inherent characteristics of fault tolerance for achieving high reliability give rise to a need 

to examine explicitly the implications of a failure mode, failure resulting from a latent fault, 

conventionally handled implicitly by testing actual system. 

A first, rather obvious characteristic of a fault tolerant system is the redundancy of its 

components — at the very least when In an initial condition free of failed components.  In the case of 

systems with requirements for reliability stated in terms of the first few hours or a small fraction of 

expected equipment lifetimes, renewal activities are needed to ensure that the systems are In a condition 

perceived to be fault-free before another period of use is begun.  This fact, combined with the MTTFs of 

realistic, avionics devices ensures that considerable amounts of repair activity will be needed •— to 

return systems to the faulti-free, initial condition needed to fulfill the assumptions underlying the 

reliability estimates. Thus, the characteristic further suggests, other things unchanging, that the more 

"multifunction" the constituent devices are, the more efficient the systems are in terms of total 

equipment used and maintained.  That is to say, the strategy used to gain the desired reliability goal 

gives rise to another goal which cannot be ignored, an economic pressure for designs utilizing 

multifunction devices such as microprocessors with software.  In striving toward the economic goal, 

however, a cost is incurred in a different coin, i.e., greater complexity in the synthesis, logic, and 

analysis of systems with parallel and intersecting signal and data paths and time-shared use of resources 

and algorithms. 

Another, necessary characteristic of a fault tolerant system is its possession of an agent or 

mechanism that embodies the intelligence by which redundancy is put to effective use for detecting and 

nullifying the erroneous outputs of devices or components.  This characteristic may take on a passive 

form when some fortuitouus property of nature is present (e.g., parallel rather than series wiring of 

Christmas tree lamps guards against an open circuit failure caused by one defective lamp), 

or, as appears more likely to be necessary in complex systems, an active form when still more devices and 

logic must be added to a redundant system to act as error detectors and nullifiers.  Of course, a price 

is paid again in increased complexity.  Moreover, there is a new failure mode that did not exist before, 

viz., failure due to a design flaw in the mechanism.  Such a flaw is more pernicious than a simple, 

latent fault lying dormant in the other part of the system until an unlikely situation awakens it; a flaw 

in the mechanism for reacting to errors necessarily implies a multi-failure event which has not been 

foreseen by the designers of the system.  Analysis of the reliability of a fault tolerant system rests on 

a precarious perch. 
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There is a notion which merits a few words at this point for it is about here that it occasionally 

arises.  The notion is that the requirement for reliability is unnecessarily stringent, as witnessed by 

the ten billion (10'°) hour MTTF previously cited.  (Indeed, some critics consider the goal of ultra 

reliability to be infeasible at best, and the resulting schemes for fault tolerant computers as 

"redundancy 'run amok'" [Goldberg, H., 1981, pp 220-222]). Ten billion hours, however, was the value 

given for the MTTF (easily computed since it equals the reciprocal of the constant failure rate) of a 

fault intolerant system and is inappropriate as a figure of merit for a fault tolerant system of 

equivalent reliability at an extremely early stage (I.e., ten hours) of its expected operation.  To 

understand this, observe the two curves in Figure 1; the curves represent the (failure) probability 

density distributions of two systems having the same mean (i.e., the same MTTF).  Density A corresponds 

to a fault intolerant system; density B, to a fault tolerant system (with redundancy in the form of 

simple parallelism).  If one supposes that the system of density A satisfies the requirement for 

reliability at the required early time (i.e., the area for the first ten hours under the density A curve 

is 10-'), then it is abundantly clear that the system of density B is excessively reliable — and 

unnecessarily costly.  Clearly, the parameters of the system of density B can be relaxed and the required 

reliability at ten hours still achieved; but then, its MTTF will be much less than that of density A. 

A better figure of merit for a fault tolerant system is provided by the MTTF of systems composed of 

several r-out-of-n subsystems (i.e., n parallel, identical devices of which r must be operating for the 

subsystem to be operating) in series.  And conveniently, a system consisting of a single r-out-of-n 

subsystem serves as a reasonable upper-bound estimate of the MTTF of a fault tolerant system when the 

representative constituent device chosen is the fault tolerant system's "worst" (i.e., the device type 

with the greatest MTTF in the set of constituent devices whose functions cannot be performed by any 

combination of the other device types of the system; a processor would be most likely in this set). 

Assuming, as before, that constituent devices have independent failure distributions and constant failure 

rates, one can show that an r-out-of-n system has a MTTF not very much different from that of its 

constituent device, and quite likely less because of factors accounted for by "coverage". Figure 2 

contains a simplified behavior model of an r-out-of-n system.  Each state corresponds to a set of 

possible configurations having a stated number of operating constituent devices. The transition rate out 

of a state is (approximately, for small X) the appropriate multiple of the constant failure rate, X, of 

one device.  Since, given the occurrence of a component failure, a successful transition to another 

operating state of less redundancy is problematical, so-called "coverage" parameters, C , are included. 

They are conditional probabilities of successful transition given a failure; unsuccessful transitions, 

with conditional probabilities (1 - C), are assumed to cause immediate system failure. Usually the 

coverage parameters are associated with systems having active recovery processes, but they are also 

applicable to passive mechanisms as long as there are transitions which can go awry among 

distinguishable, operating states. No distinction is made here. Recognizing this model and its 

assumptions as a Markov process, one can easily develop the appropriate differential equations for the 

stochastic process [Feller, W. , 1956] and determine in a straightforward manner that the probability of 

system failure by time t^ is represented by the expression 

1 -e-"^^I^7^a. (^](e^^-1)J 

where a = 1 and a. = n.^ C.  for j = 1,2,...,(n-r) . 

Ratios of system MTTF to constituent device MTTF are tabulated for various combinations of values of 

r, n, and C. in Tables 1 and 2.  In Table 1, C. = 1 for all J, implying that coverage is perfect. 
- -     J J 
Although the ratios are independent of the constituent device's failure rate (or equivalently, MTTF), not 

all combinations of r and n are useful, given a specific device failure rate, when the 10-' requirement 

is considered.  For instance, a device with MTTF less than 10^ hours could be used to construct systems 

with r and n values corresponding to zones p-1 and lower marked on the Table, but not zones p or higher. 

More specifically a device with MTTF of five thousand (5x10') hours would not be used to construct 

systems of zones t and 5.  In Table 2, C = 0.9 and C. = 0.1 for all j !^ 1 , which is excessively poor 

coverage since systems are all in zones 9 or higher.  In all cases in both Tables the ratios do not 

differ from 1 by an order of magnitude. Hence, to the extent that fault tolerant systems are represented 

by r-out-of-n systems, a simple and reasonable approximation to the MTTFs of such systems appears to be 

simply the MTTF of the "worst" device type, a far cry from the ten billion (10^°) hour value. 
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However, having Identified a better approximation to MTTF for fault tolerant systems, it is well to 

note that, in the application of interest, the systems will be effectively renewed every ten hours or so. 

Hence MTTF, in the conventional sense of an unrenewed system used until system failure, as computed 

above, is still not descriptive enough of a system's use.  In order to consider the relationship of the 

reliability requirement to safety, it is more meaningful to estimate the probability that one or more 

system failures, which will be euphemistically called emergency situations, will occur during the 

lifetime of a fleet of aircraft with realistic policies for renewal.  Therefore, assuming (1) systems 

meeting the 10-' requirement when all failure modes are considered, (2) system renewal after every ten 

hours of operation, and (3) a fleet of two thousand (2x10^) aircraft each with a lifetime of sixty 

thousand (6x10"*) hours, the probability is approximately 0.01 that one or more emergency situations will 

occur because of a computer system.  It is a matter of judgment, no doubt tempered by economics, whether 

or not such a risk to safety is acceptable. Indeed, the estimate does not consider latent failures, 

i.e., conditions where physical defects have occurred but have not yet contributed to a data error 

because the failed components have not been party to a computation.  Such a failure mode could be 

modelled as an aging effect on the systems — despite periodic renewals.  Hence, the inference must be 

made that the value 0.01 above is optimistic.  And notice that the computation has not included any 

manner of considering the effect of increased complexity as r_  and n increase. 

The increased complexity, while ostensibly reducing the incidence of system failures resulting from 

component and device failures, is ironically a major source of residual, definitional flaws in systems. 

The term "definitional flaw" is adopted here to denote an inadvertent system design which, when the 

system is in some particular condition with some unexpected data and regardless of the presence or 

absence of conventional component failures or anomalous environments, produces undesirable results which 

could have been avoided by another, proper design; the term includes design errors, specification errors 

or inadequacies, missing requirements, etc.  It matters not whether the flaw is in hardware or software 

or is the result of the correct implementation of an erroneous or incomplete specification.  The root 

cause is human error.  Of course, one expects the incidence of such flaws to increase with growth in 

complexity. There is a quite large pool of practical experience with such a failure mode — everyone's 

'betes noires', the software bugs found in operational software systems — which indicates strongly that 

the failure mode must be included, in some fashion, in the analysis of the reliability of complex 

systems.  Yet, in the avionics applications of interest, the level of system reliability required 

effectively precludes the use of thorough, lifetime or use testing of actual systems to determine with 

acceptable confidence (i.e., confidence quantified in a statistical sense) that the probability of system 

failure due to residual, definitional flaws is compatible with the reliability goals and requirement.  As 

a consequence, more analytical methods must be developed and relied upon to address total system (i.e., 

logic, largely software, and hardware) reliability (e.g., [Costes, A. et al., 1978]) '-'- but with 

acceptable credibility. 

Addressing Definitional Flaws 

Analogous to the techniques of hardware redundancy, there are techniques for designing systems with 

dissimilar redundancy (i.e., with components that are functionally redundant but implemented dissimilarly 

either in their hardware or software or both), and in the past decade they have become popular subjects 

of study and development — to the point of becoming textbook material [Anderson, T. and Lee, P., 1981] 

and practical systems in aircraft (e.g., in the AIRBUS A310 [Martin, D.J., 1982] and in the Boeing 737- 

300 [Yount, L. J., 1981J]).  Clearly, dissimilar redundancy is intended to reduce the incidence of system 

failures attributable to residual, definitional flaws. The schemes apply equally to flaws in hardware 

design and software design, but they have been studied more with software in mind.  Hence, software is 

used here to represent dissimilar redundancy effects in general.  There are two, widely known, basic, 

software fault tolerance schemes (viz., N-Version Programming and Recovery Blocks with Acceptance Test), 

and one or the other is the root of almost every scheme, which is either a variant or an extension, 

proposed in the literature or put into practice.  While the early schemes were oriented to a sequential 

algorithmic process, the later variants and extensions have considered the use of parallel, computing 

capabilities. Thus, today there is essentially a parallel of dissimilar redundancy techniques to the 

techniques of hardware redundancy. 
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Fault tolerant software lends Itself to an especially simple behavior model, as shown in Figure 

3(a), on the assumption that successful recovery from a data error caused by a fault in the software (or, 

similarly, by a definitional flaw in hardwired logic in the case of hardware) implies no degradation to a 

state representing a system with less capability or less redundancy.  The rational for the assumption is 

that the flaw responsible for the data error was always present in the system; it had simply not been 

activated before, so to speak.  Thus, if the system, by virtue of its fault tolerance characteristics, 

survives the data error, it can be expected to function as before (i.e., there will only be another data 

error when an another apparently unusual coincidence of state and input conditions occurs).  (As an 

aside, experiments using the emulation technique are suggested by this observation — experiments to 

determine whether or not software data errors might not better be modelled as error bursts).  Figure 3(b) 

is a still simpler representation of the same failure and recovery process.  Again for the sake of 

simplicity, software is assumed to have a constant failure rate, y, and fault tolerant software is 

assumed to have an aggregate recovery parameter, k_,   analogous to the coverage parameters of the r-out-of- 

n hardware model.  Immediate system failure is assumed to be the result of lack of successful recovery. 

No further elaboration of a software model is attempted.  Indeed, short of the argument for adopting 

either a conventional or a Bayesian probabilistic model, there exists no justification, and certainly no 

empirical evidence, for selecting any other, neither more general nor more particular, model of system 

failure due to software, let alone due to the more general condition of residual, definitional flaws. 

Reliability Analysis by Mathematical Modelling: How Credible? 

The r-out-of-n model of Figure 2 and the software model of Figure 3 suffice, however, to show the 

difficulty, when lifetime testing of actual systems is not feasible, of establishing with acceptable 

confidence (in the statistical sense) that systems designed to satisfy the 10-' requirement do achieve 

the reliability goal.  In Figure H,   the two models are combined to represent simply a system subject to 

and tolerant of both hardware component failures and errors due to residual, definitional flaws 

(represented here by the software).  An additional assumption is made to keep the illustration simple, 

viz., that the software and hardware behave Independently.  Clearly, that is a simplification and it is 

possible to add more complexity to the model, but, as stated before, there is no empirical evidence to 

justify selecting any particular model in preference to another.  Also, and more to the point here, the 

conclusion below is not appreciably modified.  Thus, again recognizing the model and its assumptions as a 

Markov process, the probability of system failure is computed to be 

1 - ^-(nX-ul^-k])t jn-r ^^  ^n^ ^^Xt _ ^^j 

where a„ and a. are as before. 
0     J 

For a typical (and optimistic) value for X   (=10-"* failures per hour in a hardware component), 

typical values for n (* 3 to 5 components in parallel), and the required value for t (= 10 hours), bounds 

on C , C , and vi(l-k) required for the system to satisfy the 10-' requirement are calculated to be as 

follows: 
0.999999 S C^ < 1 .0 

0.9999 S C^ £ 1 .0 

u(l-k) S 10-'° 

Note that there is in general a coupling between physical and logical redundancy techniques and guidance 

and control schemes — e.g., the choice of control laws is constrained to those capable of tolerating 

time lost in reconfiguration, etc.  The numbers above leave little margin for error in designing systems 

to satisfy the 10-' requirement.  Refinement of the model cannot eliminate the difficulty in estimating 

precisely the reliability of such systems; it can only transform it into an equivalently demanding 

knowledge of a different set of parameters, for the systems must still achieve the same aggregate 

behavior as above. 

More Complex Models 

In the process of investigating fault tolerant systems (previously, principally studies of 

hardware), numerous models have been developed for analyzing the reliability of such systems.  Studies 

have also been undertaken into models to relate the system failure modes to time-variable computational 

and performance requirements, thus attaching the reliability of a system more tightly to its applications 

[Meyer, J., 1977], [Beaudry, M. D., 1978], [Castillo, X. and Siewiorek, D., 1982], [Iyer, R. and 



2-6 

Rossettl, D., 1982].  And over the years many model evaluation schemes have been "computerized" to serve 

as more or less general purpose tools for the convenient analysis, in the architectural design stage, of 

systems composed of complex arrangements of elements, e.g., CAST [Cohn, R. B. et al., 1974], CARE II 

[Stiffler, J. J., 1971], CARSRA [Bjurman, B. E. et al., 1976], ARIES [Ng, Y., 1976], HARP [Trivedi, K. et 

al., 19811], SURE [Butler, R. W. , 1981], and CARE III [Bavuso, S. and Peterson, P., 1985].  Although they 

consider details of systems behavior such as recovery (detection, isolation, reconfiguration) strategies, 

sparing (active, stand-by, switching) strategies, transient and intermittent fault (duration, 

periodicity, leakage) modes, functional dependence among devices, nonexponential failure distributions, 

etc., the models that the various "computerized" evaluation schemes handle are still constructed from 

parametric descriptions of aggregate system, subsystem and (or) device behavior in order to make use of 

mathematical techniques applicable to idealized stochastic processes and to reach levels of reasonably 

efficient computation.  Hence, all the models contain parameters whose values need to be assumed or 

known, by some other means, in order to precisely represent any and each particular system design of 

interest.  The credibility of any reliability assessment gotten by the use of these mathematical 

techniques obviously hangs upon the inaccuracies and Imprecisions of the models, their forms and the 

values of the parameters.  But knowledge of these inaccuracies and Imprecisions can only come from 

empirical observations, i.e., testing and experimentation. 

Lifetime or use testing of fault tolerant systems appears infeasible if the systems approach their 

reliability goals; however, selective testing and experimentation can be performed to obtain knowledge 

about specific aspects (e.g., values of parameters) of the mathematical models.  The physical and 

statistical nature and number of flaws, faults, and failures, however, still make the use of actual 

systems impractical.  Surrogates, preferably abstract, into which faults and flaws can be readily 

introduced are needed •— but they must be able to faithfully reproduce the behavior of the particular, 

actual systems.  Digital simulations which mimic the working of the internal, logical.structures of the 

systems being studied are such surrogates. 

Digital Simulation 

The word "simulation" is usually used to denote all manner of techniques for, among other purposes, 

analyzing the behavior of objects and their environments by means of implementation and manipulation of 

more conveniently malleable surrogates, but here the word is limited to mean the use of computer systems 

as surrogates — at whatever level of abstraction found meaningful to an application.  The concept of 

system is stressed because usefulness of a simulation scheme depends upon both software and hardware — a 

characteristic more effectively utilized by emulation.  For example, consider even the high level 

reliability analysis programs previously mentioned — CAST, etc.  Although they are essentially 

simulation schemes which are normally discussed without regard to host computer hardware, in any actual 

application, the hardware of the host computer will be an important constraint upon the amount of detail 

which it will be feasible to consider with the programs. 

Digital simulation at the level of gate logic has been discussed for some time in the literature on 

computers and considered as a tool for design and fault (signature) analyses of digital logic circuits at 

levels of detail ranging from simple (e.g., assuming gates to have only two possible output values) to 

complex (e.g., allowing undefined values of gate outputs and various timing anomalies) [Szygenda, S. and 

Thompson, E., 1975].  For the analysis of circuits the sizes of microprocessors, memories, and larger, 

simulation techniques at a more aggregate, functional behavior level have been used (e.g., [Menon, P. and 

Chappell, S., 1977] and [Armstrong, J. R. et al, 1985]) as the gate level simulation costs become 

prohibitive when compared to perceived benefits. 

However, for the purposes of reliability analysis of fault tolerant systems, gate level simulation 

warrants considerable cost in view of the conclusion to be drawn from the preceding paragraphs that, at 

the levels of reliability of interest, the probability of failure of such systems is less dependent upon 

the mode of failure resulting from depletion of redundant resources than it is upon the less well 

understood and questionably modeled modes considered under the terms "coverage" and "definitional flaws". 

A similar conclusion to the effect "that the introduction of a redundancy at the hardware level increases 

the relative influence of software faults" is made elsewhere (Costes, A. et al., 1978).  Unfortunately, 

while the costs could be borne, in light of the benefits, gate level simulation is not always a feasible 

technique for application to questions involving chance events and repeated trials because it is time 

consuming — orders of magnitude slower than likely target systems. 
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Emulation 

In ordinary use, the word "emulation" means an endeavor to equal or excel; in the present context, 

it is reserved for a particular technique of Implementing simulation possible when the hardware of the 

host (computer) is dedicated to the task (e.g., hardwired or microprogrammed). The technique is most 

often associated with hardware implementations of logic simulators for computer-aided design applications 

[Blank, T., 19814. Microprogramming Is significant because It provides an alternative to the creation of 

special hardware for emulation purposes.  In general, microprogramming allows a final definition of a 

host computer's "apparent" instruction set to be postponed until after the definition of the host's 

hardwired logic is completed, and it does this with an acceptably small risk that the hardwired logic 

will need redesign. This happens because a "real" instruction get Is defined by the hardwired logic, is 

at a quite primitive level, and is tailored especially for executing algorithms which. In turn, become 

operational definitions of less primitive operations — the "apparent" instruction set.  It may be said 

that a computer defined by an "apparent" Instruction set does not really exist; it is "emulated" by 

microprogrammable hardware by means of mlcrocoded algorithms. Admittedly, variations in efficiency of 

variant microcode operations vis-a-vis various "apparent" instruction sets may exist, but they can be 

Ignored for the present purpose.  What Is notable is that, given reasonable care not to mismatch host and 

target computers, microprogrammable computers can perform In the role of an "apparent" computer 

approximately as efficiently as would either a hardwired version of the "apparent" computer or a 

hardwired emulation algorithm.  Of course, the existence of parallel processing capability either in the 

emulated or the host hardware can alter the relative speed of an emulation. Nevertheless, by the use of 

microprogramming, emulation occurs at a level of detail which permits software Implemented for another, 

"apparent", target computer to be executed directly by a host computer. That is, no modification of the 

target software is needed to make It compatible with the host computer, and no special software on the 

host computer needs to be generated (more importantly, no simulation program in an "apparent" instruction 

set on the host to Interpret the instructions of the target software and mimic the target computer) as 

would be needed on a non-microprogrammable computer. 

Addition of diagnostic, control functions to an emulation capability, as an add-on to hardwired 

emulation logic or in the microcode of a microprogrammable host computer, permits the host to act not 

only as a surrogate but also as a device for observing and recording (and possibly analyzing) target 

software performance in an ostensibly natural environment.  Such "diagnostic emulation" has been used for 

the development and maintenance of special software systems and is, seemingly, "emulation" in the 

dictionary sense.  As might be expected efficient use of such a diagnostic system requires support 

capabilities for readily modifying mlcrocoded algorithms defining target computers. What has been less 

well considered Is the fact that such capabilities can be extended to permit analysis not only of 

software but also of systems (I.e., software and hardware) — and not only as they are Intended to be but 

also as they are not.  By emulating target computer systems In sufficiently fine detail, combinations of 

failures in individual components, anomalous data, and definitional flaws can be introduced and their 

effects at the system level observed rather than assumed. Thus, emulation provides a conveniently 

manipulated failure effects analysis tool. 

In addition, with automated diagnostic and system and environment controls, emulation can be used to 

generate repeated trials of "emulated" systems from which failure ratios and histograms can be tabulated 

for analysis — hence, aggregate behavior models verified and parameter values estimated with some 

measure of confidence (in a statistical sense). Clearly, assumptions about the manners and rates of 

occurrence of failures and flaws must still be made in order to introduce these last into the emulations. 

However, while the credibility of precise assumptions will still be questionable, credibly pessimistic 

assumptions could be used to demonstrate that particular fault tolerant system designs exceed their 

reliability requirement. 

Examples of the use of Emulation 

As examples of the application of emulation to analyses of the reliability of fault tolerant 

systems, consider the following two studies — one long completed, the other underway.  In addition to 

their obvious purposes of analysis, the studies were done to provide experience In the use of an 

emulation capability for the AIRLAB facility at NASA's Langley Research Center.  The implemented 

emulation technique was proposed In 1976 precisely for providing abstract surrogates credibly 



representative of the Internal structures of fault tolerant, digital systems of the types to be used in 

avionics and guidance and control systems for aircraft. There are two current implementations of the 

algorithms that comprise the technique: one is as a code running on a dedicated, horizontally 

microprogrammable computer; the other runs on a general purpose computer.  (There are, of course, other 

manners of implementing the technique, as there are other algorithmic processes for simulating the 

behavior at the logic level of digital, computer systems — e.g., GLOSS [M Gough, J., 1983], also 

developed for use in the AIRLAB).  The microprogrammed technique may be summarized as follows: 

1- It is a hybrid scheme.  That is, although the nominal level of detail is the gate logic level, the 

scheme facilitates the representation of different parts of a digital system at different levels of 

detail — usually, for computational efficiency, at a less detailed and more functional level, but 

also, if needed, at a more detailed level than even the gate logic level. 

2- It is a generic scheme in the sense that it uses the same algorithm for all emulated networks and 

in contrast to embedded network schemes that compile the system definitions into a computer 

program.  Embedded network schemes presumably need a compilation for each separate network and, 

therefore, additional validation; thus, they appear more suitable to simple verification and 

validation of software — where there is no consideration of failures in the underlying hardware. 

3- It is a quasi event-driven scheme. That is, emulated time advances by fits and bounds to the next 

dynamically scheduled event(s); no host computer time (or resource) is consumed emulating inactive 

systems -!- but at a cost of maintaining a dynamic schedule of events. 

*)- It is a unit propagation delay scheme — for the most part -- in its handling of gates. In its 

normal mode of use all gates are presumed to share the same propagation delay. However, varied 

delays can be accomodated by specially definable means. 

5- It is mainly a binary valued scheme, since its principal data structure accomodates only TRUE and 

FALSE values for the outputs of its nominal, primitive devices.  However, more complex, multi-state 

behavior can be accomodated, at a cost in running time, again by specially definable means. 

6- Finally, it is a sequential processing scheme because of the limitations of the host hardware.  The 

algorithmic scheme does, however, contain latent parallelism corresponding to concurrency among 

events in the system being emulated; advantage, therefore, could be gained from host hardware which 

could accomodate the parallelism. 

The First Example:  The first effort, of limited scale, was undertaken in order to determine 

whether or not an emulation scheme could be devised which would be sufficiently efficient to support 

analyses of target systems of meaningful sizes and complexities, and to demonstrate that such a scheme 

could be implemented in a manner convenient for analysis purposes by users not well versed, it at all, in 

the emulation scheme itself.  The study was performed on a large, general purpose computer whose 

underlying micro-code was sacrosanct.  For that reason, emulation was really simulated.  This last level 

of complication can be accounted for by introducing a time scale factor and otherwise ignored here.  The 

analysis performed was a study of the efficacy of five (5) particular algorithms, each with a different 

instruction mix, as detectors of component "stuck-at" faults (i.e., latent failures) in a hypothetical 

target computer.   The analysis is documented in detail in [Nagel, P., 1978]. 

The hypothetical, target computer was originally generated (i.e., defined at the gate logic level) 

as a vehicle for checking out the original (and modified) versions of the emulation algorithms, and for 

demonstrating the ability of support software, a hardware description language translator and meta- 

assembler for regenerating target software, to respond semi'-automatically to hardware design changes. 

The hypothetical computer had a memory of 8192, 15 bit wide words, a CPU with a count of approximately 

2000 gate equivalents, and a single input-output register/port.  The logic was arbitrarily assigned to 

four (H)  hypothetical chips: a "clock" chip, an "adder" chip, an "op-decode" chip, and a miscellaneous 

odds and ends chip.  The instruction set contained about a dozen basic instructions. 

The emulated system trials were simple.  The five algorithms, ranging in length from about a dozen 

instructions to several hundreds, were repeatedly executed, with randomly selected initial data, and 

randomly selected faults of random components.  Distributions of time from fault occurrence to fault 

detection (i.e., fault latency duration) were measured.  Two analyses of the sort that would be of 

interest in studies of fault tolerant systems were made.  First, the observed distributions were fitted 

against commonly used mathematical models, e.g., exponentials, as would be done in order to determine 

models and parameter values for use in reliability analysis programs.  Although the results were not 
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initially considered significant, owing to the fanciful nature of the emulated system, they were later 

corroborated by an analogous but more thorough study using a real computer [M Gough, J. and Swern, F., 

1981].  That the distributions each exhibited different nonzero probabilities of never detecting the 

faults was predictable, but only an experiment of this nature could determine the differences in 

magnitude.  Secondly, a search was made for correlations among the distinguishable characteristics of the 

algorithms and the distributions.  The only significant correlation found was between instruction mix and 

detection probability.  Here too, because of the nature of the target system, the magnitudes of the 

correlations were not considered definitive.  But the concept is nevertheless a useful one — for 

determining which characteristics should be avoided in algorithms whose function is to reconfigure a 

system after a failure has been detected, or which characteristics should be used in those algorithms 

whose function is to detect latent failures.  The latter aspect is particularly applicable to the purpose 

of the second example below. 

The Second Example:  Currently, the emulation system is being used to examine the self-diagnostic 

characteristics of the Communicator/Interstage (C/I) of a particular Fault Tolerant Processor (FTP) 

(described in [Smith, T. B., 1984]) proposed for use in the Advanced Information Processing System (AIPS) 

being developed for NASA's Office of Aeronautics and Space Technology.  In the study [NASA, 1985], the 

target system consists of the FTP'S four C/Is, which interface with each other and with a number of 

processors (four at the time of writing) that compute redundantly.  Among other tasks, the C/Is each vote 

the redundant outputs, exchange, and pass on (return) the voted output — thus, hopefully, ensuring that 

the processors work upon the same, mutually agreed upon quantities at the next iteration.  Under control 

of the processors, diagnostics can be performed in search of latent, hardware faults in the C/Is, whose 

logic consists of about four thousand (4x10 ) gate equivalents and a small amount of read only memory. 

In the study, various faults will be inserted into the C/Is to discover what proportion will be 

detected by the preplanned diagnostic test vectors.  Two types of outcomes are anticipated.  First, the 

study will verify that the set of test vectors will detect all inserted faults. Should this not prove to 

be so, the set of test vectors will be expanded and the study repeated until the statement is true.  At 

the same time, and as a secondary benefit, "superfluous" test vectors will be identified r-r  for the 

obvious reason of making the diagnostic less time consuming, more efficient, etc.; such a result was 

achieved in a similar study of the self-diagnostic code for an avionics processor [M Gough, J. and Swern, 

F, 1983].  Secondly, distributions of the times to discovery of the faults will be developed, information 

of direct relevance in the development of appropriate mathematical models for 

analyzing the reliability of the FTP. 

Conclusion: Reprise 

A case has been made for the use of emulation techniques as a needed and useful adjunct to 

mathematical models for the reliability analysis of highly reliable avionics and guidance and control 

computer systems.  Given the lack of lifetime testing of actual systems, without, at the very least, the 

use of such surrogate analysis tools the trust to be placed in fault tolerant systems in life-critical 

situations requiring high reliability must remain dubious. 
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1.0    INTRODDCTION 

As the complexity of aircraft systems has increased and the performance requirements for 
such aircraft have become more demanding the number of safety critical systems carried 
has increased. 

This allied to the preponderance of digital systems on board the aircraft has meant that 
the software requirements of safety critical systems has become one of the pacing items 
in the development of new aircraft. 

In the early days of high integrity systems analogue techniques were used and a variety 
of redundancy techniques were developed to cope with the need to obtain the required 
level of integrity from system elements whose inherent reliability was low. 

With the advent of digital systems it is necessary to consider how such integrity can be 
achieved with the software of the system so that the total integrity of a safety critical 
system can be maintained. 

There are in fact two methods which can be used to achieve this:- 

a) fault avoidance 
b) fault tolerance. 

Of these, fault avoidance has been the main method used to date to achieve high 
integrity software and for example such digital flight control systems as are flying 
today have used fault avoidance as the main method of ensuring the integrity of the 
flight control software.  Thus, the F8 experimental fly by wire system, the Jaguar fly 
by wire system, the YC14 AFCS and the LlOll ACS have all used fault avoidance 
techniques. 

Fault avoidance techniques require the detailed application of structured design methods 
along with rigorous quality control and systematic testing of the software so that the 
probability of a software 'bug' being introduced or remaining undetected is extremely 
low.  Such methods should of course be used in all software development and safety 
critical software is mainly distinguished from non safety critical software by the use of 
very small and very simple modules.  Such modules are easy to verify and it is hoped that 
by such techniques that high integrity can be achieved. 

In practice of course, no matter how carefully the software is designed it is impossible 
to establish that it is completely error free since the large number of possible states 
preclude exhaustive testing and the statistical analysis methods used in hardware 
development are not applicable to software. 

Since a military aircraft is required to demonstrate a probability of failure due to say 
flight control failure of 1 x 10"^ per hour of flight and a civil aircraft requirement is 
two orders greater than this it is apparent that with fault avoidance techniques it is 
impossible to predict that the required level of integrity has been achieved.  From this 
it follows that other methods which can be shown to be effective must be employed and 
thus fault tolerance methods must of necessity be considered. 

In considering software fault tolerance methods, it is necessary to remember that the 
adoption of such methods should not mean that the design techniques should be abandoned. 
There is a wealth of data available to indicate that on average only 49% of the faults 
inherent in a program are discovered prior to entry of that software into service.  While 
a good fault tolerance design might prevent the remaining faults from having a 
catastrophic effect on the system, the belated discovery of such faults and the resultant 
need to modify and reverify the program, increases the life cycle costs dramatically. 

Thus fault tolerance methods and fault avoidance methods should go hand in hand.  The 
resultant design should then be extremely reliable as well as giving the required level 
of integrity. 
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2.0   GENERAL CONSIDERATIONS OF SOFTWARE RELIABILITY 

Failures in software stem from two major causes: 

a) Design errors 
b) Coding errors. 

In practice of course, it is irrelevant to consider these categories as being different 
since both are due to errors made by the design and development team and a better 
classification is to consider faults in two categories:- 

a) Faults occurring during the development and testing phases of the software 
programme. 

b) Faults occurring during the inservice life of the software.  This type of fault is 
known as a residual fault. 

The prevention and discovery of the first category of faults is aided by the use of fault 
avoidance methods, notably:- 

a) Top down structured design methods using such specification and design aids as SAFRA 
and MASCOT. 

b) Structured programming. 

c) The use of a block structured language such as CORAL 66. 

d) The use of a powerful host computer during the development phase.  The host used 
should have the ability to target the software to the final computer. 

e) The use of a well developed and debugged compiler. 

f) The use of structured walk throughs and good quality assurance techniques. 

g) The preparation of good documentation. 

h)   The use of formal change control procedures. 

These methods allied to extensive testing are the main techniques to be employed to 
provide fault avoidance and it is of interest that to date the organisations developing 
high integrity software, while in general following these practices have been reluctant 
to use high level languages. 

The reason for this is that the key to fault avoidance is complete visibility and the 
lack of this in the compiler means that the development team cannot be assured that the 
compiler is error free.  The use of fault tolerance techniques  allied to the fault 
avoidance methodology should ensure that the number of residual faults are few and that 
the occurrence of these faults in service does not have a catastrophic effect on the 
system.  When these techniques have been introduced, then high level languages can be 
considered. 

3.0   THE FAULT AVOIDANCE APPROACH 

As was stated earlier, fault avoidance techniques had been the main method used to date 
to provide high integrity software.  To illustrate this, the following description of the 
software development for the Jaguar Fly by Wire system is used. 

The essential requirement of high integrity software is visibility and this has been 
achieved by the use of simple software structures, clear requirements definition, 
thorough testing and design audit, detailed documentation and rigorous production and 
configuration control. 

3 .1   Flight Software Organisation for Jaguar Fly by Wire System 

The real time control is achieved by a hardware Master Reset Timer which calls a 
non-interruptable Executive.  The Executive then calls a number of Frames in a defined 
sequence designed to provide the required iteration rates for the various parameters.  A 
Frame is a processing time slice containing related functional modules.  One Frame 
typically contains signal selection, control law and logic module functions and consists 
of a set of program modules each of which defines a function that is easily defined, 
implemented, tested and audited. 

The structure of the flight resident program is shown schematically in Figures 3-1 
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Figure 3-1 Control Flow - Executive & Frames 

3.2  Flight Software Development Process 

The flight software implements the aircraft control functions and meets the needs of the 
safety requirements. To ensure that both requirements are met, each stage of the design 
process was accompanied by formal testing and auditing. 

Each design and test task was documented and design reviews were held at key stages of 
the software development to maintain a continuous check of integrity.  Following initial 
design approval, configuration control was enforced to permit only authorised changes. 

The key design requirements document for the Plight Resident Software (FRS) is the 
Software Requirements Document (SRD).  The SRD controls the design implementation and has 
been the prime software interface between BAe and GEC Avionics Ltd. 

The SRD was prepared in conjunction with BAe and it uses a mixture of English Language 
and program statements.  These statements are intended to eliminate definition ambiguity. 
They form the basis of the definitive software design specification and are testable to 
prove the accuracy of the requirements definition. 

The Software Structure Document CSSD) contains the running order of the modules within 
each program segment.  The structure is designed to ensure that the chronological flow of 
data from input, through processing to output, is in strict sequence. 

The codes of practice used in designing flight control software are contained in the 
Programmers Manual and the testing requirements for each phase are contained in the 
Testers Manual.  These Manuals also define the procedures and documentation require- 
ments for build standard, modification and quality assurance control. 

The overall software development process is shown diagrammatically in Figure 3-2. 
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4.0 METHOD OF INTEGRITY APPRAISAL 

4.1 Introduction 

The Integrity of the IFCS is primarily determined by the system architecture and 
therefore the primary elements of maximum concern are the points at which the redundant 
channels are consolidated or otherwise connected, together with the potential of a safety 
critical defect in the software or firmwhere. 

A variety of methods of appraisal to assess flight worthiness were used, and these are as 
follows:- 

i) General performance testing and safety assessment. 

ii) Detailed performance testing and safety assessment of specific functions. 

iii) Operational performance assessment. 

iv) Design practices used for the specification and implementation of the function. 

It was necessary to assess flight worthiness in a qualitative as well as a quantitative 
way, as many of the issues involved did not lead to useful quantitative estimates of 
safety critical risk. 
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Figure 4-1  Integrity Appraisal 

The main elements of the appraisal/audit methodology, are shown in Figure 4-1 and 
summarised as follows :- 

i) 100% coverage single fault FMEA. 

ii) Multiple fault FMEA for specific combinations. 

iii) Flight resident software integrity appraisal. 

iv) Appraisal of specific functions. 

v) Configuration inspection. 

vi) Qualification programme. 

vii) Burn-in programme. 

The primary elements were supported by:- 

a) Module, chassis and LRU FMEAs 

b) Microprogram appraisals 

c) Voter/monitor appraisals 

d) Tolerance Analyses 

e) BITE coverage analyses 

f) System architecture analyses 

g) Reliability analyses. 

During the course of the integrity appraisal detailed technical evaluations of various 
features and functions of the IFCS were made.  The requirements for these evaluations 
were generated mainly from the mainstream FMEA activity, and by BAe as a result of their 
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engineering work.  These evaluations were reported as a series of Technical Appraisals 
attached to the main integrity report and their results incorporated into the risk 
assessment. 

The integrity appraisal was conducted by a team with specialist knowledge of the design 
of the equipment and to maintain the fidelity of the appraisal they reported to an 
independent authority which consisted of two senior engineers, one from GAv and the other 
from BAe. 

5.0 RESULTS OF THE SOFTWARE APPRAISAL 

The integrity appraisal had to deal with both hardware and software.  Since this paper is 
concerned only with software, it is appropriate to consider only the software appraisal. 

The objective of the software appraisal was to assess whether a software defect existed 
which, if activated, would lead to a safety critical event. 

The software defects which may lead to a safety critical loss of control may arise from 
errors in the following:- 

Design Philosophy 

Requirements Definition 

Structure 

Frames 

Modules 

Hardware/Software Integration 

Support Software 

Configuration Production Control 

The appraisal was designed to assess each error source in a variety of ways and the 
primary scope of each major activity is shown in Figure 5-1. 
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Figure 5-1  Prime Method of Error Detection 

The results of the GAv appraisals are given in turn. 

5 .1    Results of the system FMEA. 

An extensive series of checks at system level were completed covering for example, the 
following:- 
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i)     Executive and Synchronisation. 

ii)    BITE      -     1st line 
Pre-flight 
Failure identification 
Failure logic 

iii)   Control Functions   -  Control Laws 
Signal flow 
Scheduling 
Transport delays 
Data management 
Voter/Monitors 

iv)   Workspace Usage 

v)     Storage and Run Time. 

Further, a series of special case appraisals were completed, examples of which are as 
follows:- 

i) One Frame not executed. 

ii) Lane identify failures 

iii) Sensor Tolerance analysis 

iv) Asychronous operation. 

The points which were considered to have a potential impact on system performance were 
assessed jointly by BAe and GAv.  The result was that the deviations identified, either 
had no safety critical implications or were considered to present an insignificant safety 
critical risk. 

5.2 Results of the Frame Tests 

The Frame Tests checked for example: 

i)     That all the modules linked together in a Frame were defined by the BSD (Software 
Structure Document). 

ii)    The arithmetic accuracy of the Frame outputs. 

iii)   The operation of the failure logic was as defined in the SRD. 

iv)    The data module contained all the correct variables and constants. 

The Frame Test deviations which had a potential impact on system performance were jointly 
assessed by BAe and GAv.  None of the deviations had safety critical implications, or 
were considered to present a significant safety critical risk. 

5.3 Results of Module Tests and Technical Checks. 

The module tests checked for example that:- 

i) The module code performs the function specified. 

ii) The module is arithmetically correct. 

iii) The module linkage is correct. 

iv) The data module contained all the correct variables and constants. 

These tests were complemented by a series of technical checks examples of which are as 
follows:- 

i)     The module requirement was checked for compatibility against the design 
specification. 

ii)    Conformity to the SRD, SSD and other manuals 

iii)   Module code is equivalent to specification language statements. 

The thoroughness of these processes was assessed, and the results showed that a number of 
documentation errors and design deviations existed.  However, no errors were found in the 
coded program and none of the deviations were considered to present a safety critical 
r i sk. 

5.4.   Results of the Hardware-Software Compatibility Test 

An FCC 'Software ATP' was completed in order to test the compatibility of the FCC 
processor and I/O controller with the Flight Resident software.  Although the tests 
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checked for example, the control functions and the voter/monitors, no significant 
deviations were found. 

5.5 Results of Support Software Appraisal 

For the support software, a series of checks and tests were carried out to ensure the 
compatibility of the host processor software, with particular reference to the following 
programs:- 

i) Macro Expander 

ii) Assembler 

iii) Simulator 

iv) PROM Tape Copier 

The results showed that the programs were mature and that all the deviations were due to 
the variations of the host machines used by the project and therefore the risk of a 
safety critical defect arising from the support software was considered to be 
insignificant. 

5.6 Results of Software Production Procedures Appraisal 

An appraisal of the software documentation and procedures was completed for the 
following:- 

i)    Production Methods 

ii)   Change Request Activity 

iii)  Module Documentation 

The results of the appraisal showed that although a number of deviations were 
identified, the safety critical implications were considered to be insignificant. 

5.7 Results of Configuration Control Appraisal 

The configuration control appraisal checked for example that:- 

i)    Progress cards. Build Standards, Change Requests and other processes used in 
producing the various software issues had been completed. 

ii)   All queries have been answered and all necessary Change Requests had been entered 
on the Progress Cards and Build Standards. 

This appraisal was carried out, for all Change Requests raised during the Jaguar FBW 
programme. 

Although a number of documentation errors were identified, these were generally 
associated with documentation cross referencing and no errors have been identified in the 
coding. 

5.8 Results of the BAe Queries Appraisal 

The BAe Queries Procedure was established in order that points arising as a result of the 
Warton Rig Test Programme could be formally linked to the overall development programme 
for the software. 

In order to check this procedure both GAv and BAe formally checked the response to each 
Query and no errors were identified which were considered to present a significant safety 
critical risk. 

5.9 Conclusions from Software Appraisal 

The software appraisal assessed its design, definition, implementation, test support and 
configuration control but the joint survey did not identify any defect which would 
result in a safety critical condition. 

However, in order to give an indication of the sources and types of software defect 
identified during the project, an analysis of the module change requests was completed^ 

These have been broken down into the following categories:- 

Design 44% 
FMEA 24% 
Rig errors 12% 
Code errors 7% 
Not required 13% 
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This shows that the most common reason for a change request was modification to the 
design requirements specification. 

Further, the total distribution of all CRs clearly indicated that the overall level of 
activity declined after June 1979 and that the software was mature at first flight. 

The appraisal also highlighted the following:- 

Design 

The number and distribution of the CRs, raised as the result of design or similar 
errors, followed a predictable pattern, in that the peaks corresponded to each major 
issue of the assembled program. 

Code 

The small percentage of coding errors indicate the thoroughness of the module and 
program testing carried out during and after module assembly.  It is also significant 
that the majority of the errors were detected before the first development assembly. 
Only three coding errors were found after the first assembly had been issued and the 
program has been free of code errors since June 1980. 

Module FMEA 

The number of CRs raised as the result of the module technical check FMEA indicates 
that the procedure is a significant method of error detection. 

Rig Test Results 

The testing of the modules as part of the assembly was carried out on the Warton Rig 
and the resultant CRs from this work indicate the necessity of such equipment.  The 
significant volume of error detection occurred after the first assembly was tested on 
the Rig. 

However, it was not possible to draw any significant quantitative evidence that the 
defect rate of the software was compatible with a safety critical risk of 1 x 10"'^ per 
flight hour. 

The final judgment on the software was therefore, that it had been audited by a variety of 
different methods encompassing its performance, construction and code and no safety 
critical defect had been identified.  Therefore, it was concluded that the software was 
sufficiently safe to permit flight trials to commence. 

6.0 METHODS OF PROVIDING FAULT TOLERANT SOFTWARE 

6.1 Basic Approach to Fault Tolerant Software 

Any fault tolerant system be it hardware or software must contain the following 
elements;- 

a) A method of detecting a failure. 

b) A method to determine which channel of the system has in fact failed. 

c) An alternative channel which can take over the operation of the system until such 
time as the failed channel can be repaired. 

In hardware, the usual approach to fault tolerance is to provide a number of redundant 
channels.  In this case, errors are detected by a comparison between the outputs of the 
'N' identical channels and any channel which differs from the average of the outputs is 
adjudged to be the failed channel.  This channel is then isolated and the remaining 
channels continue to operate at a lower level of integrity. 

The major problem with software is that this basic method is unsuitable.  This is because 
the basic concept of hardware redundancy relies upon spatially separating the channels so 
that the probability of a failure in one channel causing further failures in the other 
channels is extremely low.  Since a software fault is essentially a latent fault it 
exists in all identical pieces of software and will be triggered by a combination of 
input data and the internal state of the program. 

Thus, if all channels of a high integrity system contain identical software, then if the 
systems are synchronised (as is necessary for the hardware monitoring technique to work), 
then all of the channels will experience a simultaneous software failure. 

From this it follows that an alternative method must be followed to achieve fault 
tolerant software. 

The most obvious method of providing fault tolerance is then to provide alternative 
versions of the program.  This method requires a different version of the program for 
each channel and since a high integrity system requires at least three channels there 
must be at least three versions of the program produced. 



3-9 

The difficulty of a single programming team providing these alternative versions of a 
program has led to the concept of independent programming teams.  This means that for the 
simple triplex case three independent programming teams are required. 

An alternative approach is the error recovery block technique first proposed by Horning 
et al in 1974.  ("A Program Structure for Error Detection and Recovery".  Lecture Notes 
in Computer Science 16, Ed. E Gelenbe and C Kaiser, Springer-Verlag, Berlin, 1974).  This 
method establishes a series of recovery points inside the program.   Upon detection of a 
failure, the program automatically returns to the nearest recovery point and executes an 
alternative version from that point. 

To detect a failure an acceptance test is associated with each recovery block and the 
algorithm for the error recovery block scheme is:- 

ENSURE Acceptance Test 
BY Primary Module 
ELSEBY Alternate Module 1 
ELSEBY Alternate Module 2 

ELSEBY        Alternate Module n 
ELSE error 

It will be seen that the recovery block method is a more formal method of 'N' version 
programming applied to modules of a program rather than to the whole program.  As such it 
still requires a number of independent programming teams and the problems of establishing 
and controlling such teams remain. 

One of the characteristics of the error recovery block method is that the various alter- 
nates provide standby redundancy and are only invoked in the event of the primary module 
failing the acceptance test.  This minimises the execution time during the normal 
operation of the program but a failure may cause the program to stop operation until the 
system has recovered.  While this is acceptable for many systems, for such systems as 
flight control it is necessary for the system to continue operation. 

6.2    The Dissimilar Software Approach 

As was discussed above, fault tolerance requires the provision of dissimilar software. 
This approach was adopted for the A310 Slats and Flaps system and this is discussed in 
more detail below. 

Secondary flight control systems such as spoilers/airbrakes, automatic trim, slats and 
flaps and even some primary functions such as yaw damping, have throughput requirements 
which are much less onerous than primary flight control.  Computer units for these 
applications are capable of being implemented using any of a number of 8 and 16 bit 
microprocessors. 

These systems, though relatively undemanding in computing power, nevertheless have high 
integrity requirements. 

Failure survival constraints are imposed upon the electronic control system since there 
are no mechanical links from the pilot's controls to the surfaces, i.e. it is a 
fly-by-wire system.  The safety constraints are defined by probabilities for various 
occurrences, including: 

1) Inadvertent deployment of the slats or flaps must have a probability of less than 
10"^ per flight hour. 

2) Slats or flaps no longer operating and no warning given to the pilot, must have a 
probability of less than 10"^ per flight hour. 

3) Slats not operable must have a probability less than 10"^ per flight hour. 

These constraints relate to the entire slat and flap operating systems and include the 
electronic, mechanical and hydraulic components.  Hence the requirement for safe 
operation of the SFCC has to be better than the above figures. 

In considering candidate system architectures to achieve the stated requirements, one of 
the major considerations was the comparative simplicity of the task in relation to other 
flight control tasks.  Operation of the slats and flaps as performed by the software, is 
mainly a sequence of logical expressions rather than arithmetic expressions and complex 
filters as would be found in typical autopilots and autostabilisers.  This results in 
throughput and instruction set requirements that can be readily achieved by commercially 
available microprocessors.  The use of microprocessors allows a significant cost saving 
when compared to such a system using a purpose build processor.  However, the 
disadvantage of microprocessors in high integrity applications is that their internal 
workings are not visible.  Thus the failure mechanisms of such processors cannot be 
predicted . 

Another major  factor in the choice of an architecture is the views of the certification 
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authorities.  Lack of experience in the industry and the difficulty in assessing the 
integrity of software has led to recommendations from the authorities that consideration 
be given to: 

a) the use of monitoring, limiting or other provisions which are independent of the 
digital computation, to reduce the effect of failure within it. 

b) the use of dissimilar elements in critical portions of the equipments, particularly 
where analysis may be difficult or inconclusive (e.g. the processor). 

The third major factor is the failure su 
on the Jaguar fly-by-wire aircraft, it i 
a failure.  It is also necessary to cont 
the necessity to identify where the fail 
the A310 Slats and Flap System it is'suf 
On recognition of the failure, there'are 
the surfaces in their current position, 
landing, or indeed, an immediate return 
been taking off, it does not prevent the 
aircraft.  This necessity for fail-safe 
requirements as outlined above, item 3 ( 
being more an availability than a safety 

rvival requirements. In a control 
s not enough just to identify that 
inue to work correctly after the f 
ure is and to isolate or absorb it 
ficient to know that there has bee 
brakes in the wings which are ope 
Although this may mean a slatless 

to the airport from which the airc 
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system such as 
there has been 

ailure.  Hence 
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It was concluded, therefore, that two different microprocessors should be used in 
parallel to perform the slat and flat operating task.  This makes the probability of a 
common internal failure or design error within the microprocessors extremely unlikely. 
It also ensures dissimilarity of the software at the code level. 

Although this was felt to increase the level of confidence that a common coding error 
would be minimal, it does not resolve the problem of common software structure or 
algorithmic design errors.  Hence it was decided to perform two complete software 
development tasks, one for each microprocessor, with only the system requirements as 
produced by the customer being common to the two. 

6.2.1.   System Description 

A schematic diagram of the computer architecture is shown in Figure 4.6. 
are required in order to meet the availability requirements. 

Two computers 

Figure 6.1  Computer Architecture Schematic 

Internally, each of the computers contains two different microprocessors.  A computer 
will only drive its hydraulic motor if both microprocessors agree, otherwise the motor 
output is locked leaving the other computer to drive the system. 

If a computer fails, this will be detected by the different outputs from microprocessors 
1 and 2 and the computer will then isolate itself. 

If there is an uncommanded movement of the output e.g. a torque shaft breaks, then both 
computers will detect the incorrect deployment and will operate the wing brakes. This 
freezes the flaps/slats in their current position. 

6.2.2 Software Development for Dissimilar Redundancy 

A separate Software Requirements Document (SRD) is produced for each lane.  Having 
produced the SRD, the software development procedure then follows the normal path, in 
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each lane, of top-down analysis to produce a modular structure and to design and generate 
the code for each module. 

At this stage, instead of embarking on module testing, the approach that has been taken 
is to assemble the software for each lane and then to perform hardware/software 
integration testing.  It is felt that, since the lanes must agree to provide the 
computing function they each provide for the other the most stringent test environment. 
This test philosophy is amplified in section 6.2.4. 

To avoid the possibility of design errors being introduced by a common assembly fault, 
two different host computer facilities are used to assemble code for the two processors. 

The choice of microprocessors from two different suppliers further reduces the risk of 
the associated assembler packages having common errors. 

Each microprocessor memory is loaded from the associated development system in a 
dedicated format.  These formats, which are different, are read by the PROM programmer 
which is independently checked for correct function. 

The two software development activities are kept completely separate, the two programs 
eventually being proved by integration with the hardware. 

A brief summary of the software development process is shown in Figure 6.2. 

SYSTEM SPtC 

Figure 6.2 Dissimilar Software Development 

6.2.3.   Design Methodology 

One disadvantage of trying to verify software by testing is that it is extremely 
difficult to prove that the software is free from design errors.  In a similar redundant 
system the probability of an undetected software design error adversely affecting the 
system safety must be compatible with the integrity objective. 

From the Airbus Industrie A310 SFCC, the software has been prepared twice, using two 
different software development facilities.  The flight resident software suites thus 
produced are executed by different, asynchronously operated microprocessors.  The outputs 
of the two microprocessors are continuously compared and any difference greater than a 
defined threshold causes the system to disconnect after a preset time delay with all 
output drives being removed. 

A design error in one of the two dissimilar lanes can never produce a hazardous output 
from the system. 

Design errors in both dissimilar lanes could only produce a hazardous output if their 
resultant effect was identical and occurred within the pre-set time delay of the 
cross-lane comparison. 

The benefits of dissimilarity are clear.  The precautions that have been taken to ensure 
that dissimilarity is maintained are listed below. 

Software for each of the two processors is prepared by two different groups. 

The processors are different for the two lanes - are made by different manufacturers 
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and have different instruction sets. 

The two suites of software are prepared and assembled using two different software 
facilities - also made by different manufacturers. 

The processors obey instructions which have different object codes and are located in 
differently mapped program stores. 

The data used by the processors is located in data stores which are also differently 
mapped. 

The processors have separate clocks and operate asynchronously so that there is no 
requirement for frame synchronisation to link them together. 

The program store for each processor is loaded using a PROM tape, the format of which 
is different for the two lanes, since each is generated by a different support 
system. 

Discrete words exchanged cross-lane for monitoring have their bit pattern deliberately 
shifted.  This avoids the possibility of a common error when comparing the two lane 
outputs in each lane. 

With these precautions it is unlikely that the same software design error can occur in 
both lanes to produce the same hazardous and undetected output simultaneously from both 
lanes. 

6.2.4   Software Verification 

In a similar redundant system where software is common to all lanes, a single software 
error could cause loss of the total system. A  software verification procedure has 
therefore been developed which reduces the software risk to acceptable proportions. 

Several of the techniques thus developed incur no significant cost penalty and can be 
applied directly to the dissimilar approach. 

With other techniques such as module testing, the extent to which they are applied 
depends on the complexity of the module function and the consequences of not detecting 
errors.  These techniques have to be critically reviewed and applied as necessary to 
achieve the required level of integrity. 

Testing 
The duplication of software is considered to provide sufficient integrity to meet the 
safety requirements of a system in which availability is not a predominant requirement. 

Nevertheless, it was felt that to provide the required availability, certain module tests 
needed to be performed.  The modules are divided into three categories:- 

a) critical modules which will be subjected to full testing e.g. those that drive system 
outputs or monitor for asymmetrical deployment or runaways. 

b) modules that will require supplementary testing because the software/hardware 
integration tests do not accurately check certain thresholds. 

c) modules requiring no testing other than that performed during hardware/software 
integration. 

6.3    An Alternative Approach to Fault Tolerant Software 

It has been seen that fault tolerant software requires the development of alternative 
versions of the flight program. The A310 system follows this pattern and it has been 
seen that two independent software teams are needed. 

An alternative to this approach was proposed by Shepherd while at the Cranfield 
Institute of Technology. 

This approach is currently being examined by C.I.T. and GEC Avionics under contract from 
the Royal Aircraft Establishment. 

Essentially, the method follows the general concept of error recovery blocks but 
evaluates the alternate block concurrently with the primary block. 

The method depends upon two techniques: 

a) The concept of Temporal Separation of Software Channels. 

b) The concept of deriving an alternate version of the program from the primary 
version. 

These techniques are discussed below. 

6.3.1   Temporal Separation 

The concept of temporal separation is essentially based upon the fact that while spatial 
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separation prevents the proliferation of hardware faults, software faults are time 
dependent.  Thus, to ensure that a software fault does not affect all channels 
simultaneously, it is necessary to ensure that each channel does not process identical 
data.  The method of ensuring this depends upon the fact that for a real time system such 
as flight control a high iteration rate is used.  The method is then to use inputs from 
different time periods for each of the channels. 

To illustrate this consider a triplex system.  Assume that each channel has program 
version A  as its software and that the total system has reached iteration n. 

Then let  An  represent program A on its nth iteration, An-1 program A on its n-ith 
iteration etcetera. 

Then let the distribution of programs be as follows:- 

Channel No. Program State 
1 An 
2 An-1 
3 An-2 

The system operates on channels 2 and 3.  If An can be checked for correctness then on 
the next iteration this becomes An-1 and since it has been established that the program 
operates correctly with this input data (on the previous iteration), it is safe to 
control the system using this software and input data. 

To decide whether An is correct it is necessary to provide a method of checking An.  This 
is done by generating an alternate version of the program using the methods described 
below. 

For the moment however, assume that an alternate program B exists.  Then using the same 
notation as given above the basic system implementation is given by:- 

Channel No. Primary Program Alternate 
1 An Bn 
2 An-1 Bn-1 
3 An-2 Bn-2 

If then An is compared with Bn and is within tolerance then the system is operating 
correctly and the data can be processed to control the system using channels 2 and 3. 

If An and Bn outputs disagree by more than a set tolerance then a Lagrangian 
Extrapolation of previous outputs can be made. 

Thus from An-3, An-2 and An-1 a value An(est) is obtained.  Similarly, a value Bn(est) 
is found. 

The following comparisons are then made:- 

An - An(est) = El 
An - Bn(est) = E2 
Bn - An(est) = E3 
Bn - Bn(est) = E4 

If then  (El + E2)/2 < (E3 - E4)/2 then program A is correct else program B is correct. 

In practice an additional check is carried out to ensure that the error values of the 
smaller of the above equations are below a tolerance level. 

This method is valid for such systems as flight control since as was mentioned above a 
high iteration rate is used and the difference between successive outputs is small. 
Thus, it is possible to extrapolate to obtain the estimates required. 

In practice, the following implementation was carried out:- 

Channel No. Main Program Alternate 

1 An 
2 An-1 
3 An-2 

and a state table established showing previous states. 

Then if the new value of Bn-2 is different from the previous value of Bn-1 a hardware 
fault must exist in channel 1.  Similar considerations apply to channels 2 and 3.  Thus 
the method can be used to detect both hardware and software failures. 

For this method to function it is of course necessary to construct an alternate version 
of the program.  The method proposed to do this is described below. 

6.3.2.   A Method of Generating an Alternate Version of a Program 

In considering software monitoring, it is necessary to consider the four types of 
operation encountered in a program.  These are:- 

Bn- -2 
Bn 
Bn- -1 
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a) Arithmetic operations 
b) Logical operations 
c) Decision and branch operations 
d) Input/output operations (including interrupts). 

Each of these types of operation are considered in turn. 

6.3.2.1 Arithmetic operations range from the simple assignment operation to very- 
complex functions.  It is obviously necessary to consider this total range of operations. 

Assume therefore, that the program contains a series of arithmetic modules and it is 
required to check these modules. 

Let the output from a program module A be a function of variables Bl, B2, ...., Bm. 

Then at sample n assume 

An = f(Binf B2n •..-, Bmn) is correct. 

At sample n+1 

An+1 = f(Bin+]_,  , Bmn+l) 

An+i differs from An by a value A An+i and this change is due to the change in the values 
of Bin to Bin+l of   ABin+i. 

Then 

An +  A An+i = f(  (Bin + ABin+i), (B2n + 'iB2n+l) •• (Bmn + ^Bmn+i)  ) 

If now a relationship can be found such that 

f(  (Bin, ABin+i), .. (Bmn + A Bmn+l >  ' = f'Bin, AB2n..Bn,n) +  <3 

(Bin, ABin+i, B2nr AB2n+l ■• Bmn,  A Bmn+l) 

Then 

AAn+i = g(Bin,  ABin+i  , Bmn,  '^ Bmn+l) 

But     A An+l  =  An+l  -  An 

Thus, if the function g is obtainable, two measures of An+i are available and if  An  is 
correct then the correctness of  An+l can be established. 

The problem must therefore be considered in two parts:- 

a) For a given function f, does a derived function g obeying the above requirements 
exist? 

b) If such a function g exists, is it independent of f, (i.e. if f fails  does g 
survive)? 

It is obvious that for many of the commonly used functions in realtime systems, it is 
possible to derive such a g  function and to show that they are independent. 

6.3.2.2 Logical Operations 

In addition to arithmetic operations it is necesary to consider logical operations of the 
form: 

A   :   =  B  +  C 

A   :   =   B.C 

where      +      =  OR 

AND 

In general with these types of equations, it is easy to produce an alternative 
algorithm. 

De Morgans' theoram states that 

A.B     =   A  +  B 

A  +  B =   A.B 
Thus the above functions can be expressed as:- 

A  =  B + C  =  B + C  -  A.B 

A  =  B.C    =  B.C    =  B + C 
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In general, as is common in logic design any Boolean function can be expressed in terms 
of either NOR or NAND operations and thus there are always two alternative expressions 
for logical operations.  Thus the requirements for having different algorithms for the 
main and check programmes are satisfied. 

6.3.2.3   Decision and Branch Operations 

These operations are typical of the form:    BEGIN 

If  X  =  Y   THEN BEGIN 
MODULE A 
END 

ELSE BEGIN 
MODULE B 
END 

END . 

It will be seen that this type of operation is a combination of arithmetic and logical 
operations and can be treated as such. 

Thus, the next iteration of the loop is 

If   X+  &X     =     Y        +    AY      THEN    

This is  modified to 

BEGIN 
IF X-Y<> AY- Ax        THEN  BEGIN 

MODULE  B 
END 

ELSE   BEGIN 
MODULE   A 

END 
END. 

It will be seen that the previous values are compared with the increments and the 
opposite state (not equal instead of equal) to give the branch condition.  Once again 
therefore, different algorithms are used to check the main algorithm. 

6.3.3    Results of Preliminary Study 

In order to check the validity of the approach, software representing the short period 
mode of an aircraft was developed and the techniques described above were applied. 
Approximately 60,000 random faults were introduced for each of 3 different input signals 
(which had random noise superimposed to ensure that realistic signals were used). 

The results obtained were:- 

Sine Test     Triangle Test    Sawtooth Test 

No. of faults 61127 
%  Detected 100 
%  Errors corrected 83.9 
Acceptable errors (1-15%) 16.0 
Unacceptable errors 0.1 

In practice the sinusoidal input is more nearly representative of the type of input used 
in flight control. 

It should be realised that no attempt was made to optimise  iteration rates or tolerance 
levels during this study and that therefore it is to be expected that even better results 
can be obtained. 

The results obtained to date however indicate that the proposed approach is valid and 
that it is worth considering the concept further. 

6.3.4    Estimates of Failure Probability 

We now pass on to considering the probability of failure of the fault tolerant system.  A 
success/failure disagram of the fault tolerant software can be constructed as follows: - 

62019 61063 
100 100 

82 76.5 
17.9 24.2 
0.1 0.1 
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pm 

f— R 

pm 

ps 

Path 1 

Path 2 

Path 3 

Path 4 

where R. pm the reliability of the main program 

Upm -     the unreliability of the main program 

■'ps the reliability of the difference equation program 

Upg  =  the unreliability of the difference equation program 

Rpj,  =  the reliability of the check program used in the fault tolerance system 

Upc  ~  the unreliability of the check program. 

Each of the paths shown in the diagram describes a particular situation in the fault 
tolerant software. 

Path'l  reliability 

Path 2  reliability 

Path 3  reliability  =  Upn,*Ups*Rpc 

Path 4 =  Upin*Ups*Upc 

Path 4 will result in a failure in the fault tolerant software. 

"pm 

Upm*I^ps 

The probability of a software failure of a program is closely linked to the unreliability 
of a program.  We can say that 

Psf  ~  Psfmain  *Psfsecondary  *Pundetected error 

For a typical piece of software 

Pgf  =  1  X  10"3/hour 

for well tested programs. 

Assuming that the main and secondary programs of the system are well tested, we can say 
that 

Pgf  = 10~3 *io~3 *p undetected error 

From the results obtained it is possible to assume that the probability of an undetected 
error will be small.  A rough estimate could be 

^undetected error  =  10-3/hour 

and the probability of a software failure for the fault tolerant system suggested 
becomes 

Pgf  =  10~9/hour 

despite each section of the software having a probability of failure 

=  10"3/hour. 
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I. INTRODUCTION 

Redundancy management in control systems is usually viewed separately from the control 
algorithm. The control system is designed under the assumption, that sensors do not fail. 
Then redundancy management has to provide the required measurements with only very short 
interruptions by failures of individual sensors. If. the plant is for example an unstable 
aircraft, this means that failure detection is vital for stabilization, it has to operate 
fast and this requirement is in conflict with the requirement of low probability of false 
alarms. 

In this paper a hierarchical system is proposed. Its basic level is a fixed gain control 
system, which is designed such, that pole region requirements are robust with respect to 
component failures. All more sophisticated tasks like failure detection and redundancy 
management, plant parameter identification and controller parameter adaptation or gain 
scheduling are assigned to higher levels, if they are required for best performance. The 
higher levels processes more information and are operating in a slower time scale than 
the basic level. Since the higher levels are not vital for stabilization they can make 
their decisions without panic haste. 

This paper deals with the design of the robust basic level control system. The particular 
example is an F 4-E, which is destabilized by horizontal canards, see Fig. 1. Only the 
short period longitudinal mode is considered, i.e. second order dynamics. The actuator is 
modelled as a first order low pass with transfer function 14/(s + 14), its state variable 
is 6 , the deviation of the elevator deflection from its trim position. 6  is not fed back, 
because this would require an estimate of the trim position. 

In a previous study [1], [2] measurement of normal acceleration N and pitch rate q is 
assumed and the linearized state equations are written in sensor  coordinates with the 

T 
state vector x 

X  = A x 

[N 

Ml 

^21 

z 

b u 

'12 

'22 

^] 

M3 

'23 

Thus 

b = 

! 0 14 

"^" 
0 

:   14  1 

(1) 

Data for the four typical flight conditions of Fig. 2 were taken from [3] and are given 
in the appendix. The eigenvalue locations of the short period mode are given in table 1. 
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Table 1 

FC       MACH ALTITUDE OPEN LOOP SHORT PERIOD EIGENVALUES 

1 0.5 

2 0.85 

3 0.9 

4 1 .5 

5000' 

5000' 

35000' 

35000' -.87 ± j4.3 

3.07 1 .23 

4.90 1.78 

1 .87 0.56 

The aircraft is unstable in subsonic flight and unsufficiently damped in supersonic 
flight, such that adequate handling properties must be provided by the control system. 

Note that in stationary flight the elevator and canard are not used independently. The 
commanded deflections are coupled as 

6     =  u ecom 

6^  „  =  -0.7u ccom 

where the factor -0.7 was chosen for minimum drag. Thus the short period mode stabilization 
is a single-input problem. 

The required closed loop eigenvalue locations are given by military specifications for 
flying qualities of piloted airplanes [4]. For the short period mode described by 

2 2 
s   +  2C^^u^^s  +  u   =  0 sp sp      sp 

the restricted range of damping ;   and natural frequency oi  is 
sp sp 

(2) 

0-35 1 ?sp 1 1.3 (3) 

'^a 1 "^sp 1 '^b 

where u^ and Uj^ depend on the flight condition and are given in the appendix for the four 

conditions considered here. 

Fig. 3 shows the nominal region r., eq.[3) together with the open loop eigenvalues for a 

subsonic flight condition j. Damping greater than one in eq.(3) corresponds to two real 
eigenvalues. Eq.(3) would admit some real pairs of poles with one of them outside the 
region r.. In the following no use is made of this possibility. For all real pairs 

inside r. condition (3) is satisfied. We require, that the closed loop short period poles 

of each flight condition j = 1, 2, 3, 4 are located in the respective region r.. 

The military specifications do not contain requirements for the location of additional 
closed loop poles originating from actuator or feedback dynamics. Quick response is 
essential for a fighter,therefore the non short period eigenvalues should not unnecessarily 
slow the dynamic response. In order to keep them fast enough and separate from short period 
eigenvalues an additional region to the left of r. is prescribed. The damping requirement 

? ^0.35 is kept from eq.(3) and a natural frequency range '^u 1 '^ 1 "J , "J = 70 rad/sec 

is chosen in order to maintain a bandwidth limitation below the first structural mode 
frequency. The extended region is shown in Fig. 3. 

The assumed type of sensor failure is that the nominal gain v = 1 is reduced to some 
value 0 £ V < 1 and an additional bias or noise term is added at the sensor output. As far 
as eigenvalue location is concerned, only the gain reduction to zero is important. 

s 
The objective of this paper is to design the basic level control system such that the 
pole region requirements of Fig. 3 are robust with respect to changing flight condition 
and sensor failures. A novel "5^-space" design technique [5] is applied in this design. 
It will be reviewed briefly in the following paragraph. In application to the example it 
is then shown, how robustness with respect to changing flight conditions can be achieved 
by appropriate choice of k^,  and k  in an output feedback control law 

u =  - l\,       \       0] X (4) 

For robustness with respect to sensor failures in [1], [2] a configuration with two gyros 
and one accelerometer and dynamic feedback was studied. It showed the disadvantage of 
using the accelerometer. Therefore here a different solution with three gyros and dynamic 
feedback is given. For this solution the responses in C" for a pilot step input are given, 
where 

C"  =  (N^ + 12.43q)/C^ (5) 

The stationary value C is used for normalization. 
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II   POLE REGION ASSIGNMENT 

The most essential aspect of 0<i-space design is pole region assignment. Other features 
will be discussed later using the design example. If a tradeoff with other design re- 
quirements has to be made it is not satisfactory to find one solution, for which all 
eigenvalues are in their respective regions in s-plane, e.g. by pole placement or root 
locus techniques. It is desirable to find all such solutions. This is achieved by mapping 
the region r in s-plane into a region P_ in the parameter space 5^ of coefficients of the 

desired characteristic polynomial first. Then P„ is mapped into a corresponding region 

K„ in the parameter space of feedback gains. The first step only deals with properties 

of polynomials 

P(s)  =  PQ + p^s + ... + Pjj_^ s'^"  + s'^ 

=      [£^   1] [1  s ... s"]^ (63 

n 
IT 

i=l 
IT   (S - S^) 

The problem is: Find the region Pj, in 5^ space such that £ 6 Pp if and only if s. G r for 

i = 1, 2 ... n. The boundaries of P„ for a connected region T  with two real axis inter- 

sections at a, and a^   consists of three parts corresponding to the cases that a real eigen- 

value crosses the boundary in s-plane at a.   or at o^  or a complex conjugate pair crosses 

the complex boundary. For the real values these boundaries in ^space are the n-1 
dimensional hyperplanes P(Or) = 0 and P(On) = 0. 

For the complex case 

P(s)  =  [s - a - jo)) . (s - a + ju) . R(s) 

=  [s^ - 2as + a^ + a)^(a) ] ■ R(s) 
(7) 

2 
If for example the boundary u (a) is a circle with real center a     and radius r, i.e. 

(a -CT^]^ + oj^ = r^, then P(s) = [s^ - 2as + r^ + 2a^a  -   a^] R(s) . For a fixed .R(s) , ^ 

depends linearly on a, i.e. in S^  space a straight  line segment from a point on 

P(a, ) = 0 (with a double root at a,) to a point on P(On) = 0 (with a double root at a^) 

results. As the n-2 coefficients of R(s) vary, this straight line is moved and forms the 
complex boundary in ^-space. For n = 3 this is illustrated by Fig. 4. If £ crosses the 
plane containing the triangle ABC, then a real root crosses the unit circle at s = -1 
and analogously for the triangle BCD and s = 1. If £ crosses the hyperbolic paraboloid, 
which is formed by a family of straight lines, then a complex conjugate pair of eigen- 

2 
value crosses the unit circle. If lo (a) is a conic section 

2 2 0) (a)  =  c   + c.a     +     c,a (8) ^ ^     o     1      2 

then the image for a fixed R(s) is a conic section instead of the straight line above. 
The complex boundary may be defined piecewise as in Fig. 3. 

The complex and the two real boundaries partition the 5^ space into regions distinguished 
by the location of the eigenvalues relative to r. 

In the second step a controller structure is assumed, e.g. state feedback 

u  =  - k'^ X ,  k^ = [k^   k^ ... k^] (9) 

and the region P_ is mapped into a region K„ in the controller parameter space <!^     with 

coordinates k. , k^ ... k  such that k  e K„ if and only if £ e Py,. It was shown in [1], 

that for state feedback, eq.(9), this is accomplished by an affine mapping 

k"^- =     [2^       1] E (10) 

where the pole assignment matrix E describing the plant is determined by a controllable 
pair A, b as follows: 



4-4 

Let R [b A b A-^-l b] 

[0 ... 0   1] R 

Then 
T 

e^A" 

(11) 

By this affine mapping hyperplanes remain hyperplanes and conic sections remain conic 
sections. Thus all principal properties of the regions can be studied in the canonical 
parameter space i? . A system (A,b) is interpreted as an affine mapping from .J'-space to 
^-space. 

For each pair A., b., i.e. fo 
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Ill  ROBUSTNESS WITH RESPECT TO FLIGHT CONDITION 

The first design objective will be to design an output feedback controller, eq.(4), which 
meets the nominal pole region requirements at all four flight conditions. 

The boundary for flight condition 2 is shown in Fig. 5. On a-b eigenvalues are on the 
lower natural frequency boundary u  = 3.5, on b-c they are on the damping 0.35 lines. 

bp 
At c-a real root boundary takes over: on c-d the actuator eigenvalue is at a = -70. On 
d-e a real short period eigenvalue is at the upper natural frequency limit a = -12.6 and 
for e-a the actuator eigenvalue is at a  = -12.6. The condition for having no real real 
root a = -3.5 is satisfied in the total region. This region R_Q„2 ■'■^ bounded by two 
straight lines c-d and d-a resulting from real root conditions and by the two complex 
boundary curves a-b and b-c. Note that the boundaries in s-plane are conic sections and 
thus a-b and b-c are segments of conic section also. 

The regions R 1 - R   . for the other flight conditions were found by mapping the nomi    nom4 '' /   ri-  & 
eigenvalue constraints for each flight condition into the kj^  - k -plane. These four 

regions have the intersection R   shown in Fig. 6. Thus robustness with respect to ° nom ° 
changing flight conditions can be achieved by static output feedback of the accelerometer 
and gyro signals. More precisely: All eigenvalues at all four flight conditions are in 
their prescribed regions in s-plane if and only if the pair kj, , k  is chosen in the 
region R 

As an example choose the design point Q^, i.e. kj,  = -0.115, k 

eigenvalues are given in table 2. 

-0.8. The closed loop 

Table 2 

FC 
Short period eigenvalues 

damping      natural frequency 
Actuator eigenvalue 

0.94 

0.61 

0.79 

0.55 

4.68 

9.18 

4.63 

8.11 

18.31 

37.29 

17.78 

27.04 
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The selection of a design point in R   is a tradeoff, in which the designer learns, which °  ^        nom ' ° 
requirements are conflicting. E.g. structural vibrations are most critical in flight 
condition 2 (high speed, low altitude). They can be reduced by avoiding the vicinity of 
the Oo = -70 boundary. Low damping is most critical at the supersonic flight condition 4. 

Damping can be increased by avoiding the vicinity of the i,.   =  0.35 boundary. Sluggish 

responses in landing approach can be avoided by avoiding the vicinity of the a^ = -2.02 

boundary. The a, = -7.23 boundary is only necessary in order to separate actuator and 

short period poles, the design point may be chosen close to this boundary. 

IV  'ROBUSTNESS WITH RESPECT TO SENSOR FAILURES 

As far as stability is concerned, a failure of the accelerometer(gyro) is equivalent 
to a reduction of k,,  (k ) from the nominal value to zero or some value in between. 

Nz ^ q 
Fig. 6 shows that the nominal region does not intersect the axes, thus in the assumed out- 
put feedback structure it is not possible to maintain nominal specifications after their 
failure, 

Fig. 6 shows however that a considerable gain reduction inside R __ is admissible, if k^, 

and k  are reduced simultaneously. This can be achieved by replacing the accelerometer 

measurement N by an estimate Si , which is produced by a filter from q. It is not necessary 

that this is a true estimate, e.g. generated by an adaptive observer. It is sufficient, 
that this is a constant filter connected to q such that the frequency response from u to 
the filter output N  is an approximation to the frequency response from u to N  for an 

z ^ 
average over the four flight conditions. Of course separation does not hold, i.e. we can 
not take the same pair of feedback gains kj,, , k as in the case of accelerometer measure- 

ment. However this consideration leads to a structure of the feedback system with a two 
dimensional signal basis q and 15 , and a new exact determination of admissible regions in 

the plane of the two feedback gains kj^^, k , see Fig. 7 , can be made. 

Both transfer functions from u to N  and to q have the same denominator, thus the filter 

has to cancel approximately the zeros in the q-channel and to replace them by the averaged 
zeros of the N  channel. Table 3 shows the zeros and gain ratios of the transfer functions 

at the four flight; conditions. 

Table 3 

Open Loop Zeros and Gain Ratio 

PC MACH ALTITUDE q-ZERO Nz-ZEROS 

-.542±j5 33 

-.929±j9 12 

-.392±j5 67 

-.481±j8 05 

-.586±j7 .04 

V^Q 

1 .5 SOOO' - .884 

2 .85 5000' -1 .57 

3 .9 35000' - .637 

4 1 .5 35000' - .826 

AVERAGED VALUES 

.527 

.536 

.537 

.577 

.543 

Fortunately the gain ratio is almost constant. The filter is then 

0.543 
s"' + 1 .172s + 49.9 

(s + 0.983 
10 

s + 10 (12) 

The term 10/(s+10) was included to make the filter realizable. The pole at s = -0.98 
approximately cancels the q-zero and is therefore weakly controllable from u, i.e. the 
corresponding closed loop pole will remain in the vicinity of -0.98. This however has 
little effect on the C" step responses and is exempted from the pole region requirements. 

Note that the corresponding idea to use the accelerometer only and to omit the gyro leads 
to the inverse filter of eq.(12). Here the approximate cancellation occurs for a complex 
pair in the vicinity of s = -0.586 ± j7.04, i.e. close to the imaginary axis and no 
robustness with respect to changing flight condition can be achieved [1]. 

Fig. 8  shows the intersection of the admissible regions for the four flight conditions. 
It is seen, that flight conditions 2 and 3 are the critical ones, in the accelerometer 
feedback case flight conditions 1 and 4 were the most critical ones. However the two feed- 
back gains have the same order of magnitude and the shape and extension of the admissible 
region still admits a choice of k as shown in Fig. 8 , namely 
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k Nz -0.09 

k        -0.8 
q • 

(13) 

such that the pole region requirements are satisfied for 2k/3, k/2 and k/3. 

The failure detection logic in Fig. 7 decides as follows 

a) Three gyros unfailed:  g^ 

b) Gyro i failed:   g.  =  0 

'3  " 

1/2 

1/3 

Before the decision b) has been made, we have a case between k and 2k/3. If a second gyro 
fails after decision b) has been made, we have a case between k and k/2. Only in the un- 
likely case that a second gyro fails before the first failure has been detected, the gain 
may be reduced to k/3. For the two typical cases k, 2k/3, k/2 and k/3 the eigenvalues 
are given in the appendix. They meet all pole region requirements. Also the C" step 
responses have been simulated for the open loop k^,  = k  = 0, Fig. 9, and for the closed 
loop with k and k/2. Fig. 10. Fig. 11 shows the corresponding elevator deflections 6 . 

V   CONCLUSION 
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1.)  Aerodynamic data for eq.(1) 

FC 1 

Mach 0.5 

Altitude     5000' 

a^^ - 0.9896 

^12 17-41 

a^3 96.15 

32^ 0.2648 

a^^ - 0.8512 

a23        -11.39 

b^ -97.78 

■\ 

APPENDIX 

J 

FC 2 FC 3 

0.85 0.9 

5000' 3 5000' 

- 1.702 - 0.667 

50.72 18.11 

263.5 84.34 

0.2201 0.08201 

-  1.418 - 0.6587 

- 31.99 -10.81 

-272.2 -85.09 

FC 4 

1 .5 

35000' 

- 0. ,5162 

26. ,96 

178, ,9 

- 0, .6896 

- 1 . ,225 

-30, .38 

-175.6 

2.)  Military specifications for flying qualities, see eq.(3) 

Natural 

frequency     FC 1 FC 2 FC 3 FC 4 

(rad/sec) ... ^ 

0) 2.02 3.50 2.19 3.29 a 

a)jj •  7.23 12.6 7.86 11.8 

3.)  Closed-loop eigenvalues 

2 2 
Complex eigenvalues s  + 2cws + lo are written (cij). The short period eigenvalues 
are listed first. 

Gain FC 1 FC 2 FC 3 FC 4 

k 
(0. 
(0. 

60,  4.30) 
60, 17.2 ) 

-0.87 

(0. 
(0. 

68,  4.63) 
,38, 26.4 ) 

-1.63 

(0. 
(0. 

.57,  4.38) 
64, 16.2 ) 

-0.62 

(0.65,  5.34) 
(0.45, 20.9 ) 

-0.86 

2k/3 
(0. 
(0. 

57,  3.86) 
71,15.3  ) 

-0.86 

(0. 
(0. 

,66,  4.41) 
,47, 22.0 ) 

-1 .67 

(0. 
(0. 

,52,  3.95) 
,74, 14.5 ) 

-0.61 

(0.60,  5.47) 
(0.55, 17.6 ) 

-0.87 

k/2 
(0. 
(0. 

,55,  3.47) 
,77, 14.4 ) 

-0.85 

(0, 
(0, 

,64,  4.17) 
.54, 19.6 ) 

-1.72 

(0. 
(0. 

.50,  3.59) 

.80, 13.8 ) 
-0.60 

(0.56,  5.54) 
(0.62,  1.57) 

-0.88 

k/3 
(0. 
(0. 

,56,  2.86) 
,84, 13.5 ) 

-0.83 

(0, 
(0, 

,61,  3.69) 
.64, 17.0 ) 

-1.84 

(0. 
(0, 

.48,  3.05) 

.87, 13.1 ) 
-0.59 

(0.48,  5.53) 
(0.74, 13.9 ) 

-0.90 

0 
open 
loop 

1 .23 
- 3.07 
-1 4 
-10 
- 0.98 

1 .78 
- 4.90 
-1 4 
-10 
- 0.98 ■ 

0.56 
- 1 .87 
-14 
-10 
- 0.98 

(0.20,  4.4 ) 
-14 
-10 
- 0.98 
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Horizonta 
canards (6 )' 

Elevator (5g) 

q = 9/ 

Fig.   1      F4-E with  canards 

0.8       1.2       1.6 

Mach Number 

2.4 

Fig. 2  Flight envelope and operating points [3] 
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-9,30  -9.25  -0.20  -0.15  -9.19  -9.95  0. 

I t I I t I I I 1 I I I I I I I I I t I 1 I t I I I I I 

a2=-12.6 

l<N2 
o 

0.25 -020 -0.15 -0.10 -0.05 -0.00 
■i   1   1—  1   1  -0.0 

^^ = 0.35 

Oi = -7.23 

fa,=-2.02 

-- -0.5 

■—3 

kq 

-1.0 

- -1.5 

■2.0 

Fig. 5 Admissible region for flight condition 2 
Fig. 6  Intersection of admissible regions for 

flight conditions 1 through 4 

W"i rii m   *   I 
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input s+ 6 
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. 
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FA -E 

qi 
91 

92 n  ^   • q2   , ' q 
T 

qs _._J 
93 

Nz c /o    s2 + 1.172   s + /.9.9 
(. 5 + 0.98) (s + 10) 

Fig.   7     Robust flight  control   system with  3  gyros 

■0.1 
—y- 

kN2 

(J02 = 3.5 

Fig. 8 Admissible region for control system configuration of Fig. 7 
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RELIABILITY MODELING OF FAULT-TOLERANT COMPUTER BASED SYSTEMS 

Salvatore J. Bavuso 
NASA Langley Research Center 

Mail Stop 130 
Hampton, Virginia 23665-5225 

USA 

SUMMARY 

Digital fault-tolerant computer-based systems are on the verge of becoming commonplace in military 
and commercial avionics. These systems hold the promise of Increased availability, reliability, and 
maintainability over conventional analog-based systems through the application of replicated digital 
computers arranged in fault-tolerant configurations. Three tightly coupled factors of paramount 
importance, ultimately determining the viability of these systems, are reliability, safety, and 
profitability. Reliability, the major driver, affects virtually every aspect of design, packaging, and 
field operations and eventually produces profit for commercial applications or to increased national 
security for military uses. 

The antithesis of promise for the digital computer Is, however, the Achilles' heel of the 
reliability engineer. The utilization of digital computer systems makes the task of producing credible 
reliability assessment a formidable one. The root of the problem is embodied In the very essence that 
makes the digital computer such an outstanding device for a host of applications, namely its adaptability 
to changing requirements, computational power, and ability to test Itself efficiently.  It is the intent 
of this paper to address the nuances of modeling the reliability of systems with large state sizes, in 
the "Markov" sense, which result from systems that are based on replicated redundant hardware and to 
discuss the modeling of numerous factors which can reduce reliability without concomitant depletion of 
spare hardware. The diminishing factors are captured by the inclusion of "coverage" parameters that 
capture in probabilistic measures the effectiveness of system handling of faults.  Advanced coverage 
(fault-handling) models are described and methods of acquiring and measuring parameters for these models 
are delineated.  Some recently measured latent-fault data are also presented. 

1 . INTRODUCTION 

The development of two novel methodologies for the reliability assessment of fault-tolerant digital 
computer-based systems Is reported In this paper:  Computer-Alded Reliability Estimation III and Gate 
Logic Software Simulation.  Both technologies were developed to mitigate a serious weakness in the design 
and evaluation process of ultrareliable digital systems. The weak link is the unavailability of a 
sufficiently powerful modeling technique for comparing the stochastic attributes of one system against 
others. Some of the more interesting attributes are reliability, system survival, safety, and mission 
success. 

A long-term goal of the NASA Langley Research Center Is the development of this tool.  The 
technology development process is shown in figure 1 . Historically, our interest in this subject 
commenced circa 1971.  At that time, two math models were identified as having potential for filling the 
assessment gap. Figure 1 shows those models as CARE, Computer Aided Reliability Estimation, a computer 
program generated at NASA's Jet Propulsion Laboratory for application to long-lived, space borne computer 
systems; and TASRA, Tabular System Reliability Analysis, a computer program due to Battelle Memorial 
Laboratories for application to the F-111 Pitch Flight Control System (refs. 1 and 2). 

The CARE computer program is a very powerful reliability assessment capability for fault-tolerant 
system concepts that existed In the late 1960's. A major innovation in reliability modeling In CARE was 
the incorporation of the stochastic concept of coverage due to Roth et al. (ref. 3).  Coverage, defined 
as the conditional probability that a proper recovery occurs if a fault exists, was shown by Bouriclus et 
al. to be a significant factor for achieving high reliability in modular replacement systems (ref. 4). 
Prior to this consideration, reliability analyses omitted the coverage parameter entirely which caused 
math models to assume a unity probability of system recovery given a fault occurrence, thereby forcing 
the reliability predictions to be nonoonservative and hence, inaccurate.  Although powerful and 
Innovative, the CARE math model suffers from two major deficiencies, its inflexibility to model the 
emerging multiprocessor-based systems and the lack of a model for computing the coverage parameter. 

The TASRA computer program, in contrast to CARE, utilizes the popular "Markov" analysis method which 
allows a very flexible modeling technique but lacks the vital coverage model as well. 

Based on these findings, NASA Langley participated in the codevelopment of CARE II with the Raytheon 
Company (refs. 5 and 6). The primary objective in creating CARE II was to develop a coverage model to 
compute coverage for CARE. Figure 2 presents the coverage math model and delineates the factors 
comprising the coverage computation.  Although the CARE II model represents a quantum leap in coverage 
modeling, CARE II still retains the architectural-description inflexibility of the original CARE system. 

A gestation period ensued following the CARE II development that Involved Langley in numerous 
studies, some of which are depicted in figure 1 as square blocks, and the codevelopment of two new 
reliability assessment methodologies, i.e., CAST (Combined Analytic Simulative Technique) and CARSRA 
(Computer-Aided Redundant System Reliability Analysis) . The coverage impact study determined upper and 
lower bound values of coverage for a fault-tolerant triplex flight control computer system utilizing 
state of the art hardware (ref. 7).  The CAST study made two important contributions to our program at 
Langley:  it emphasized the potential importance of transient modeling in reliability predictions, and it 
Introduced the notion of combining an analytical approach with computer simulation (ref. 8).  By 
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Figure 2.- CARE II coverage model, 

partitioning the modeling of ultrareliable systems in this latter manner, an otherwise intractable 
problem, using either approach in toto now becomes workable.  The CAST concept has become the mainstay of 
our approach to reliability assessment since the completion of the CAST study, circa 1974. 

CARSRA was a spin-off from a Boeing Company study on the design of an Airborne Advanced 
Reconfigurable Computer System (ARCS) (ref. 9). The development and application of CARSRA was our first 
comprehensive involvement with the assessment of complicated aircraft flight control systems.  The 
complexity of flight control systems gave rise to the creation of CARSRA in two important areas.  Since 
CARSRA utilizes the Markov approach, a state reduction technique was required, and it became clear that 
tne assessment tecnnique must uioclel stage dependencies in order to assess a variety of system 
configurations which constitute continued mission success.  The most familiar example of the application 
is system survival.  In a redundant fault-tolerant system, there are many system configurations (arising 
out of system reconfigurations in response to module failures) which will effect the proper system 
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output; however, there are other system configurations that may be of interest In addition to system 
survival. Boeing, In the ARCS study, defined the term "functional readiness." It is expressed as a 
time-dependent probability and Is applied to missions containing critical subtasks which will either be 
performed or not be performed, depending on the operational redundancy level at the time of demand. 
Boeing cites, as an example, an aircraft automatic landing function for which a certain level of hardware 
redundancy is required before a landing may be initiated In poor visibility and weather conditions. 
CARSRA.also benefited from its predecessors by incorporating a multicoverage parameter capability and an 
electrical transient modeling capability. 

Transient modeling proceeded in two directions:  the stochastic estimation of intermittent failures 
of computer piece-parts and the modeling of the effects of Induced analog transients on digital circuitry 
(refs. 10 and 11). The latter study is ongoing work that relates an analog transient source with a 
digital system's activity. The form of this relationship will be a stochastic model for input to a 
system reliability assessment model. 

Software reliability studies are an ongoing activity at Langley. The most recent completed study 
suggests the possibility of estimating software reliability through testing.  Although still in the 
experimental stages, a methodology has been proposed that estimates probability of software error as a 
function of execution time and test trials (ref. 12). 

All of the activities depicted by figure 1 have culminated to form the basis for the development of 
CARE III.  CARE III was codeveloped by Langley and the Raytheon Company and cosponsored by the U.S. Air 
Force Avionics Laboratory at Wright-Patterson Air Force Base (refs. 13, It, and 15).  The salient 
features of CARE III are summarized as follows: 

• GENERAL-PURPOSE RELIABILITY ANALYSIS AND DESIGN TOOL FOR 
FAULT-TOlfRANT SYSTEMS 

• LARGE REDUCTION OF STATE SIZE 

• FAULT-HANDLING MODEL BASED ON PROBABILISTIC DESCRIPTION 
OF DETECTION.   ISOLATION, AND RECOVERY MECHANISMS 

• VARIETY OF FAULT AND ERROR MODELS (STATIONARY AND NON- 
STATIONARY) 

•PERMANENT 

•TRANSIENT 

•INTERMIHENT 

•DESIGN FAULTS 

•SOFTWARE ERRORS 

•LATENT FAULTS 

• USER-ORIENTED LANGUAGE FOR DESCRIBING COMPLEX SYSTEM 
CONFIGURATIONS AND SUCCESS CRITERIA (FAULT TREE) 

2. CARE III - A GENERAL-PURPOSE RELIABILITY ANALYSIS AND DESIGN TOOL FOR FAULT-TOLERANT SYSTEMS 

CARE III was designed to model large ultrarellable systems incorporating replicated digital 
electronic subsystems.  Examples of such systems are shown in figure 3 (refs. 16, 17, 18, and 19). The 
CARE III assessment process is depicted In figure 4 and begins with an architectural description of an 
ultrarellable system.  If that description is based on a conceptual model of the system, then CARE III is 
used as a design tool; or, if the system is well-defined, CARE III is utilized as an analysis tool.  In 
either case, the analyst generates a set of failure rates and probability density functions for the 
various failure and error mechanisms he wishes to include in the analysis. A partial list of failure and 
error models is delineated in figure 5.  Inclusion of any of these models will necessarily lower the 
system reliability estimate.  The need to Include a model is of course a function of the architectural 
structure, its fault-handling mechanisms, and the magnitudes of the parameters in the model. The large 
choice of failure and error models is provided to increase the realism and credibility of the analysis. 
The models are user options in CARE III and may be omitted at the discretion of the analyst. Usually he 
will omit certain models after determining that they have a minimal effect. Some of this modeling 
information is used to define the system fault-handling model(s) required as a user input, depicted by 
the state diagram in figure 4.  The remainder of the failure and error modeling data is entered as 
Fortran NAMELIST statements for batch computation or the CARE3MENU user-friendly interface program may be 
used for interactive input (ref. 20). 
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Figure  4.-  CARE IIT  user process. 
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Figure  5.- Delineation  of  hardware  and  software  failure  and  error models. 

Another  irapor-tant step  in setting up CARE III  input  is the generation of  the system configuration 
and success criteria.     Fault-tolerant systems are usually designed to have many hardware and functional 
combinations that enable proper system operation.     CARE III uses the powerful fault  tree language to 
describe system failure configurations.     In large systems,   the number of success combinations can be very 
large,   and for this reason CARE 111 uses  the "unsucoess"  or failure combinations  instead.     In a properly 
designed system,  the number of failure combinations  should be considerably  less than the number of system 
success combinations,   thus easing  the computational task.    The fault tree language provides an excellent 
medium for delineating the system failure combinations. 

Referring again to figure 14,   the user-prepared data are initially processed by the CARE III  input 
subprogram,  CAREIN,   shown as the upper disk.    It is essentially composed of the fault tree language 
program.     The second CARE III  subprogram,   COVRGE,  processes the fault-handling model  data and puts  them 
into the  form required by the  third subprogram,  CARE3,   which performs the reliability computations.     CARE 
111  is written entirely  in the ANSI  standard Fortran 77  language and currently executes on the Digital 
Equipment Corporation 11/700 series computers,  the Control Data Corporation CYBER  170 series computers 
using  the Fortran V compiler,   and the International  Business Machines 308X series computers.    The CARE 
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III output data take two forms, graphical or tabular.  In either case, the outputs of most interest are 
the total system reliability or system survival as a function of time and two vital components: 
probability of system failure due to hardware redundancy limitations (depletion of spares) and 
probability of system failure due to Improper fault handling.  In ultrareliable systems, the latter 
factor is the predominant cause of system failure (ref. 20). 

An example of the CARE III assessment process (batch Input) is given by figures 6 and 7.  Figure 6 
is a sketch of an ultrareliable fault-tolerant multiprocessor composed of 10 memory-processor pairs which 
communicate with each other over 5 individuals bus lines shown in the chart as a solid bus line.  This 
system survives if at least 2 computers and 2 buses are operational.  The analyst wants to compute the 
probability of system survival at 10 hours of mission time for this multiprocessor system and the 

10 IDENTICAL MEMORY PROCESSORS 

BUS- 

FAULT > Zy      FAULT DETECTION 
(SOFTWARE VOTE) 

MEMORY CONTENTS 
INITIAL TASK ASSIGNMENT ff   g   g^   ^   ^ RECONFIGURATION 

DECISION BY EXECUTIVE S/W 

TASK REASSIGNMENT 

EXEC. ff g ff ^ 
Figure 6.- Ultrareliable fault-tolerant multiprocessor 
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Figure 7,- CARE III input for ultrareliable fault-tolerant multiprocessor. 
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probability of system failure at 10 hours due to spare hardware depletion and due to Improper system- 
fault handling. For this simple Illustrative example, the analyst creates two fault trees and a state 
diagram for system-fault handling as depicted in figure 7. 

The SYSTEM FAULT TREE describes the system stage configurations that cause system failure resulting 
from depletion of hardware redundancy.  The computer stage is comprised of up to 10 computers, each 
having an identical failure rate. The bus stage is composed of up to 5 buses, each having and Identical 
failure rate, most likely different from that of a computer. The OR gate In the SYSTEM FAULT TREE means 
that the system fails if a computer stage fails or a bus stage fails. A computer stage fails If less 
than 2 computers are operational, and a bus stage fails if less than 2 buses are operational. These 
conditions are described in the line beginning with "$STAGES".  This statement is a Fortran NAMELIST 
statement.  It says there are two stages (NSTGES=2), i.e., 10 computers and 5 buses (N=10,5), and the 
minimum for stage survival is 2 for each stage (M=2,2). The remainder of the line describes the form of 
output data requested.  The fault tree description for CARE III input is shown under the heading, SYSTEM 
FAULT-TREE.  It describes the gate interconnections and the types of gates.  There is another cause of 
system failure that is implicit In the SYSTEM FAULT TREE and that is system failure due to single-fault 
failures in either stage.  Details of this model are discussed later. 

A unique modeling capability of CARE III is the incorporation of the effects of synergistlc pairs of 
failures. In fault-tolerant systems, the system could contain many undetected (latent) failures which 
individually would not cause system failure; however, certain groupings of failures that coexist may 
bring the system down.  The CRITICAL-PAIR TREE enables the analyst to specify the conditions under which 
synergistlc paired failures cause system failure.  For this case, any 2 latent computer failures out of 
10 computers or any 2 latent bus failures out of 5 buses cause system failure.  For a more accurate 
analysis, one would usually specify which paired failures cause system failure. The CRITICAL-PAIR TREE 
is described by the data listed under the heading, CRITICAL-FAULT PAIRS (fig. 7). 

The next step in the CARE III input process is the description of the FAULT-HANDLING Model. This 
simple state model is composed of two system states, active (A) and active detected (AD). The active 
system state is entered when a module failure occurs. It is an undetected or latent state. If a fault 
detector is employed, is the rate at which failures are purged from the system. CARE III assumes that if 
the system enters the active detected state and it has spare hardware, it will reconfigure out the faulty 
module and the system will recover. Note, as 6 increases, the probability of synergistlc failures 
occurring diminishes since there will be fewer latent failures present.  In figure 7^ line 1, $FLTTYP, 
shows that there is one fault model (NFTYPS=1 ) and defines the value of as 3.6 x 10 detections per 
hour. Line 3, $FLTCAT, simply links failure rates denoted as RLM arrays to stages (JTYP) . Line 5, 
$RNTIME, specifies a flight time of 10 hours. 

CARE III input data for this example system begins with the statement $FLTTYP and includes all the 
statements that follow in figure 7.  The CARE III output includes the total system probability of 
failure, the system probability of failure due to improper fault handling, and the probability of system 
failure due to depletion of spares. 

2.1 User-Oriented Language for Describing Complex System Failure Configurations (Fault Tree) 

The multiprocessor example made use of a trivial application of the CARE III fault tree language. A 
better example emphasizing the power of the fault tree input is given by figures 8 and 9.  Figure 8 shows 
a block diagram of a proposed fault-tolerant flight-control system.  Of particular interest is the pitch 
augmentation stability (PAS) short cycle function. The system fault tree for this function is presented 
in figure 9. This tree illustrates that not only hardware redundancy can be represented but functional 
redundancy as well. The elevator math model is functionally redundant to the secondary actuators.  The 
melding of hardware and functional redundancy is a common practice in aircraft design. The proper entry 
of this fault tree into CARE III with the necessary failure rate and fault-handling data would yield a 
prediction of the probability of loss of PAS function as a function of mission time. Figure 9 is read as 
follows.  An output from logic OR gate 212 constitutes loss of PAS function which can occur if an output 
from OR gate 211 occurs, or if an output from gate 210 occurs, or both.  Gate 210 yields an output if at 
least 3 out of H  secondary actuators or actuator function (elevator math model) fail.  Secondary actuator 
A will fail if computer A fails, or actuator A fails, or both.  A similar description can be used to 
delineate failures due to loss of computation or loss of sensors. 

2.2 Fault-Handling Model Based on Probabilistic Description of Operative Detection, Isolation, and 
Recovery Mechanisms 

In figure 7, a simple fault-handling model of two states was described.  CARE III has both a single- 
fault model and a double-fault model for coincident paired failures.  The single-fault model is given in 
figure 10 and is shown in the dashed box. For illustrative purposes, three additional states have been 
added so that the state diagram is a Markov model of a two-unit system.  Initially, the system is in the 
state 0 and has experienced no failures.  When a module failure occurs, the module enters state A, the 
active latent state, given by the arrival density, X(t). Depending upon the nature of the failure, i.e., 
permanent, transient, intermittent, etc., the fault-handling model would be defined differently. For 
example, if the failure were intermittent, X(t) would be the probability density function (PDF) for the 
arrival of an intermittent, and states A and B define the intermittent model where a and g are constant 
transition rates into and out of state B.  When the module is in state B, the benign state, the failed 
unit appears to have healed itself; i.e., the manifestation of the failure, a fault, vanishes.  However, 
when the failed manifestation is once again resumed (the fault reappears), the module enters state A 
where the failure looks like a permanent failure.  It could be detected by a self-test program with PDF 
i5(t'), and the system would enter state A , the active detected state.  Given that a spare exists, the 
system will purge the faulty unit and switch in the spare (dashed arc to state 1). Or while in the 
active state, the fault could generate errors with PDF p(t'). The module then will enter the A^,, active 
error state.  The intermittent failure could manifest its intermittent state again so the module would 
then enter state B , the benign error state.  Although the failure is benign, the error may not be benign 
and may cause system failure which is denoted by the B_ to F transition [(l-c)e(T)].  The error detection 
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density is E(T), and 1-C is the proportion of errors from which the system is unable to recover.  While 
in state B„, the error could be detected and corrected.  In this event, the module enters state B^ 
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t   = GLOBAL OR MISSION TIME 

f = TIME FROM ENTRY TO STATE A 

T  = TIME FROM ENTRY TO STATE A^ 

Figure 10,- Overall reliability model of two-'unit system. 

(benign detected) by transition OECT). At this point, the system may choose to do nothing further with 
the detected and corrected error and so move to the benign state, or the system amy choose to reconfigure 
out the module containing the error and, therefore, move to state 1. The dashed arcs are instantaneous 
transitions.  The other transition out of state A  is to state F, the single point failure transition 
[(l-o)e(T)]. This transition is similar to the B to F transition. In a well-designed fault-tolerant 
system, {I-C)E(T) should be near zero.  If X(t) is the PDF for the arrival of a transient, a would be set 
to a value greater than zero and B would be equal to zero. The PDF X(t) for the arrival of a permanent 
failure would be defined so that a = B = 0. The dashed arc going from state A to A enables the analyst 
to include the effects of the system decision that the detected fault which took the module from state A 
to A_ was, in fact, a transient. In this regard, the system would not reconfigure out a non-failed 
module. A judicious choice of values for the single-fault model affords the analyst a wide range of 
models.  A different fault model may be assigned to each stage, or several models may be assigned to a 
given stage to cover the effects of different failure mechanisms such as transients, intermittents, and 
permanent failures. 

The reader will note that the reliability model in figure 10 has three measures of time associated 
with it which necessarily makes the model a semi-Markov process. This added complexity is required 
because the behavior of the system is dependent on the onset of the various fault-behavior events. 

2.3 Large Reduction of System State Size 

The capability thus described comes at no small computational price if state of the art techniques 
are employed.  In fact, if one were to utilize the popular "Markov" modeling technique on a nontrivial 
system such as the flight control system shown in figure 11 (which is composed of 22 stages and 64 
reconfigurable modules) coupled with a reasonable set of failure and error models (some of which are 
delineated in fig. 5), the number of system states would be on the order of millions. For each state, a 
linear differential equation is formed.  Clearly the solution of millions of differential equations is 
computationally intractable if not impossible with today's technology. But CARE III was designed to 
assess these types of systems. How does it do it? 

To understand the CARE III state reduction method, it is expedient to first examining how the state 
size buildup occurs in the Markov method.  A Markov state is described as an ordered n-tuple. The 
components of the n-tuple contain information about the number of failed reconfigurable modules in the 
system plus system fault-handling information for each module and fault type (permanent failure, 
transient, etc.). For the system shown in figure 11, the n-tuple has a minimum of 22 components, i.e., 
one for each stage. For each stage, additional n-tuple fault-handling components are added to describe 
the number of failed modules that are system detected, the number that are Identified with a 
reconfigurable module, and the number that have been recovered.  A set of fault-handling components is 
included in the n-tuple for each type of failure, e.g., transient, permanent, and intermittent.  The 
total number of n-tuple components becomes very large.  The product of the n-tuple components gives the 
number of possible system states; although in practice, the actual number is less than this but still 
very large.  In contemporary practice, tractable analyses are accomplished by making numerous assumptions 
about the system to reduce the state size to the order of 1000.  CARE III, on the other hand, retains a 
considerable amount of detail without the burden of unmanageable state sizes.  This feat is accomplished 
in CARE III by separating fault-handling information from the fault occurrence, i.e., information about 
the number of failed units. Each model is worked separately to a point then recombined (ref. 21). An 
example of this state reduction is depicted by figures 10 and 12. When CARE III processes the fault- 
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Figure 11.- Advanced reconfigurable flight control system. 
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Figure 12.- Aggregated reliability model for a two-unit system. 
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t t 

Pj(t) = e    ° 

Xj(T)dT Z;PJ.(T)CJJ(T)XJJ(T) 

dT 

/   Xj(n)dn 

WHERE 

P,(t) = PROBABILITY OF BEING IN STATE I AT TIIViE t 

X.j(t)= TRANSFER RATE FROM STATE j TO STATE I 

X^(t) =Z\j(t> 

C, (t) = COVERAGE ASSOCIATED WITH A FAILURE WHICH.   IF COVERAGE WERE 
J PERFECT.  WOULD CAUSE A TRANSFER FROM STATE j TO STATE I 

THE SYSTEM RELIABILITY IS GIVEN BY 

R(t) =   XI   Py^t^ 

FOR THE SET L OF ALLOWABLE STATES. 

Figure 13,- CARE III state probability computation. 

handling model of figure 10, that Information is mapped into time-varying transition rates \At)  and 
X (t), as shown In figure 12. What might have been a stationary semi-Markov process for the system of 
f?gure 10 will always become a nonstatlonary Markov process. For large systems, state size reductions of 
at least 10,000 to 1 have been estimated. The solution to the nonstatlonary process model of figure 12 
Is given by the solution to the forward Kolmogorov equation depicted in figure 13. The system 
reliability is computed by summing the probabilities, PjCt), for the allowable or success states. 
Numerically, it Is more accurate to compute the probability of system failure in lieu of reliability 
(probability of system survival). The user-defined fault trees specify the system failure states, so 
that the probability of system failure is simply the sum of Pj,(t) over 8,, the set of system failure 
states.  CARE III actually computes the probability of system failure using the equation, 

J. i' X,{ii)dn 0 

where the probability of system failure Is given by the sum of Qj,(t) over I,   the set of system failure 
states. 

3. GLOSS-GATE LOGIC SOFTWARE SIMULATION 

It is one thing to Implement a very powerful reliability model and quite another to make It useful. 
For all reliability evaluators, including CARE III, a weakness lies in the unavailability of data for 
many of the fault-handling parameters. The situation is not a total loss, however, since reasonable 
engineering estimates can be made In many cases, and furthermore, the sensitivity of the system 
reliability can be tested against variations in the questionable data.  A better way, of course, is to 
measure or estimate the parameters based on some empirical observations. 

3.1 Latent-Fault Modeling and Measurement Methodology 

Since system fault detection appears to be the most critical fault-handling parameter, NASA Langley 
in 1977 initiated a series of studies to investigate a methodology for measuring the fault latency of 
digital computers (ref. 22). The methodology consisted of simulating a 1000 equivalent gate computer in 
a host CDC CYBER 173 computer. The simulated computer was a paper design and Is referred to as a 
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"hypothetical" machine. The hypothetical machine was simulated at the gate level.  Actually, two copies 
of the hypothetical machine executed identical code in synchronism, where one machine received a stuck-at 
fault at the onset of the computation.  Detection or nondetectlon was determined after the nonfaulted 
processor completed its execution.  At that time, the computational results of the two simulated machines 
were compared, bit for bit. Any difference constituted detection.  If no detection occurred, the code's 
input variables were randomly altered, and the processes were repeated for the same fault. This scheme 
was repeated for up to eight executions for the same fault, if detection did not occur.  If a detection 
occurred in less than or equal to eight repetitions, or no detection occurred after eight repetitions, 
then a new trial began where another stuok-at fault was induced. This overall process was repeated for 
up to 1000 randomly selected faults. The 1000 induced faults were selected as a function of piece-part 
failure rates and were distributed equally across the nodes of the gates.  The latency time, i.e., time 
to fault detection, is expressed in number of code executions or repetitions. 

The comparison of output data from two or more computers is often referred to as a comparison- 
monitoring detector which is an important detection mechanism employed in many operational fault-tolerant 
systems. 

The results of the pilot study were both surprising and intriguing.  Using six different programs 
ranging from a very simple fetoh-and-store program to a very complex linear convergence scheme, the pilot 
study showed that only 50 percent of the Induced faults were detected after eight repetitions for all six 
programs. Figure 14 depicts typical results. The implication that these results have on reliability 
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PROCESSOR 

DETECTION, 
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ERROR 
DETECTION 
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DETECTED IN A 
SIGNIFICANT TIME 
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Figure 14.- Latent-fault measurement. 

assessment for highly reliable systems is staggering.  They suggest that highly reliable systems cannot 
be designed with comparison monitoring or majority voting as the major stuck-at fault detector (ref. 7). 

i.l  Veriiicatlon of Latent-Fault Measurement Methodology 

It was with this concern that a series of further experiments to investigate the validity of the 
pilot study results were designed at NASA Langley.  After all, it was not clear the similar results could 
be obtained for a real processor executing practical software. The goals of the follow-on work were to 
test the findings of the pilot study utilizing a real avionic miniprocessor, to access the significance 
of injecting faults at the gate level and at the functional pin level, to evaluate an airborne self-test 
program, and to account for undetected faults (refs. 22, 23, 24, and 25). The methodology for gate level 
simulation, which was codeveloped by NASA Langley and Bendix, is called the GLOSS, Gate Logic Software 
Simulator. 

The pilot study results were tested in three phases using a gate simulation of the Bendix BDX-930 
miniprocessor, a 5000 gate equivalent computer.  Initially the same six pilot study programs were coded 
using the comparable primitive instruction set of the hypothetical machine, i.e., load, store, add, 
subtract, and branch.  The next phase allowed the six programs to be receded using the rich instruction 
set of the BDX-930, and finally comparison-monitoring detection was measured for a flight control system 
code in lieu of the six pilot study programs.  The surprising outcome of this experiment is typified in 
figure 15 for all six programs.  The percent of undetected faults is about the same for all the programs, 
instruction sets, and two different machines, i.e., 50 percent. As the code becomes more complex, the 
shape of the histogram bunches up, so that virtually all the detection occurs in the first execution. 
The latency time decreases somewhat with increased code complexity, but not the percent detected. 

When the same set of experiments are repeated with the exception that faults are induced at the 
register transfer or pin level in lieu of the gate level, similar results shown by figure 16 appear.  One 
notable difference, however, is that the level of detection significantly rises. 
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Figure 17,- Summary and results. 

AR an extension to the pilot study, the latent-fault measurement methodology was applied to an 
airborne self-test program consisting of 2000 BDX-930 Instructions which executeo in cnree uiilliseconds 
on the BDX-930.  While the simulator executed the self-test program, faults were induced at the gate 
level and, in a separate experiment, at the pin level.  The design goal for the self-test program was 95 
percent detection. Figure 17 presents a summary of the self-test detection values and the comparison- 
monitoring detection values. For the same level of fault inducement, the self-test code shows the 
highest detection, but fell short of the 95 percent requirement for gate-level faults. With considerable 
effort and expense, the 87 percent self-^test detection was increased to 9k  percent, which appears to be a 
practical upper bound on gate-level fault detection.  Flight control system code improved fault detection 
substantially but still fell short of zero percent undetected for gate-level faults.  For component-level 
injected faults, the industry-assumed value of zero percent undetected was achieved. 

3.3 Some Profound Results and Observations 

The wide dispersion 
injection and, hence, wh 
faults at the gate or pi 
This concern is further 
fault injection, yields 
propagation mechanisms, 
used with great caution, 
faults that were not det 
i.e., there exists some 

of detection raises some confounding questions about the method of fault 
ich detection parameters to use in reliability assessments.  The inducement of 
n levels yields a wide dispersion of detection when all other factors are equal. 
exacerbated by the knowledge that the method practiced by Industry, pin-level 
the higher detection values. At our present level of understanding of fault 
the pin-level detection values would appear to be nonconservative and should be 
if at all. This recommendation is based on our knowledge that the gate-level 

ected after eight repetitions are potentially detectable or distinguishable, 
code or sequence of code that will propagate a distinguishable fault. 

In the process of investigating the reason why faults were not detected after eight repetitions, it 
was discovered that there exists a class of faults that can never have an effect on the system and, 
therefore, will never be detected.  This class of indistinguishable faults has been estimated to comprise 
16 percent of all faults.  An example of an indistinguishable fault is a stuck-at fault located at the 
unused output of a flip-flop circuit.  An important outcome of this discovery regards the method of 
estimating detection coverage. The more accurate approach is to delete the 16 percent indistinguishables 
from the set of induced faults in the computation of detection coverage.  The net effect is to increase 
the magnitude of detection coverage. 

The lessons learned from these latent-fault modeling and measurement studies are summarized as 
follows: 

o Practical measurement of detection coverage for stuck-at faults is possible and is a necessary 
aspect of reliability assessment. 

o Comparison-monitoring detection for typical application codes is much less than expected, which 
poses serious implications for highly reliable systems. 

o 95 percent gate-level self-test detection coverage is measurable and achievable, but expensive to 
accomplish, 

o The industry practice of measuring self-test detection by inducing faults at the pin level may 
not be conservative, and in view of the fact that the reliability of highly reliable systems is 
very sensitive to detection, further analysis of this practice is required. 
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4. CONCLUDING REMARKS 

The CARE III program and the user-friendly interface, CARE3MENU, are currently available to U.S. 
companies through NASA's software dissemination facility, COSMIC (ref 26).  The CARE III math model is 
embodied in a Fortran 77 computer program that has received considerable national scrutiny.  The 
validation of CARE III was conducted by industry, the university community, and by the U.S. Government at 
NASA Langley Research Center and by the U.S. Air Force at Wright-Patterson Air Force Base. 

The development of a generally applicable GLOSS computer program, which embodies the GLOSS 
methodology, is currently underway.  The GLOSS will execute on the VAX-11, 700 computers series (ref. 
27). 
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I S A U R E 

Integration of Security and fAUlt tolerance 

in the REalite 2000 system 

J.CAZIN (*) and P. MICHEL (*) 

1. INTRODUCTION 

In the framework of the french project SURF sponsored by ADI (**), the ONERA/CERT research center 
(*) and the INTERTECHNIQUE Company (***) have developped a fault tolerant operating system, named ISAURE. 

This system includes data protection features and error recovery mechanisms. It offers the same 
services as the REALITE 2000 system already available on the market. It used first the MULTI6- 
INTERTECHNiqUE microprogrammable machine, and later a specific hardware implementing protection domains via 
capability based adressing mechanism. 

The collaboration between the two organisms is the result of converging and complementary aims : 

. the INTERTECHNIQUE Company is trying to set up a future range of systems and machines oriented 
towards management applications and offering a high level of functional security ; 

. the CERT/ONERA research center wishes to apply methodological research results /I, 2/ and thus 
continues its research work in the context of practical applications. 

This collaboration is one of the more original features of the project and it allows the 
introduction of advanced concepts into the industrial sector. 

1.1. Services offered by the REALITE 2000 system 

REALITE 2000 is a management oriented system. It functions in a real time conversational context 
and is available to multiple users (up to 32). It manages a data base by using a virtual memory system. 

Users dialogue with the system through display devices. All communications are made through either 
easily assimilable languages adapted to the applications of the system : JCL, Text editor, BASIC- 
management, FRANCAIS (interrogative language very close to the usual French thus allowing the data base to 
be consulted easily) or preestablished specific application programs. 

The data base is decomposed in a four levels file hierarchy : 

system dictionary —> user dictionary —> file dictionary —> data file 

The file structure allows the manipulation of items of variable lengths and also directs access to 
them, thus ensures a compromise between performance and storage efficiency. 

REALITE 2000 system, by using a virtual memory technique, offers the user's programs a memory 
capacity equal to that of the mass storage connected on line to the system. 

1.2. Additional user needs 

In the context of business management, it is extremely important that the management tools be 
infallible, as any defect may cause perturbations which could be fatal for the firms using these tools. We 
may observe several critical aspects : 

. security and coherence of information in the data base, which constitutes the user's most 
important holdings ; 

. availability and continous functioning of the system even when incidents are present. 

They are several causes for incidents (or exceptions) : 

. user error of malice ; 

. misuse encouraged by the system itself ; 

. software error in either the operating system or the application programs ; 

. hardware failures. 

(*) ONERA-CERT      : Centre d'Etudes et de Recherches de Toulouse - 2, av. Edouard Belin 
BP 4025 - 31055 TOULOUSE CEDEX - FRANCE 

(**) ADI : Agence de I'Informatique - Tour Fiat Cedex 16 
92084 PARIS LA DEFENSE - FRANCE 

(***) INTERTECHNiqUE : Soci6t6 Intertechnique - B.P. 1 - ZI "Les gatines" 
78370 PLAISIR - FRANCE 
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1.3. General specifications for I5AURE 

The general remarks in 1.2. reinforced by the conclusions of a critical study of REALITE 2000 are       , 
at the origins of the basic specifications of the ISAURE system ; 5 

1 

. make use of the services of the REALITE 2000 system ; \ 

. offer a safer policy for using the system (strict dynamic management of privileges and rights, a 
more orderly use of the data base, more elaborate tools for programming applications) ; 

. set up a very reliable structure and organization of the system, based on firmly established 
principles : design methodologies /3,4/, error confinement and data protection /5,6,7,8,9/ ; 

. offer error recovery mechanisms based on exception handling principles /lO,11,12,13,14/ to deal       , 
with incidents mentionned in 1.2. ,' 

These basic specifications have led to important technical choices : ^ 

. develop a PASCAL-like programming language adapted to modular systems (this choice, moreover has 
eliminated many problems inherent to programming a system in an assembly language) ;      . ^ 

i' 

. emulate by microprogram a capability-based adressing machine and later built up a specific 
hardware. 

In the two following sections, we set up the problems of error confinement and error recovery and 
present  the  solutions  (formalism  and  tools)  choosen  in  the  ISAURE  system. 

The  last section deals with a detailed example ;   error  recovery  in  the ISAURE  data base management. ' 

2.  ERROR CONFINEMENT  IN A MODULAR AND HIERARCHICAL  SYSTEM j 

2.1  Error confinement and hierarchy 

The  design  phase  of  a program  (or a system),   by stepwise refinement,   leads to a hierarchy and to a ' 
decomposition of the program into types or functions. According to their level in the hierarchy and the 1 
chosen   formalism,   they   are   implemented  by  modules,   monitors,   clusters,   procedures,   blocks,   instructions... I 
/3,4,15,16/.  We will use,   later on,   the word component  to name one of  these implementation units. ^ 

Considering  program  structures,   two kinds of ordering relations between components within a 1 
hierarchy  must  be pointed out  : I 

. the "nesting relation" ; for example, a procedure nests a block, a block nests another block (in 
ALGOL-like langages). 
The nested component context,   i.e.   the set of  reachable data  from  the component,   is  the union of  local  data 
of  the component and of  the nesting component context. 

. the "calling relation" ; for example, a module calls another module, a procedure calls another 
procedure. 
The  contexts  of  calling  and called component  are  dissociated.  A  mechanism  for  parameter  passing  is  needed 
to transfer some information between these two components. 

The nesting and calling relations are generally used together. In an ALGOL program, for example, 
the nesting relation is prevailing with nested blocks but there are also procedure calls.   In a domain '■ 
system,   the relation between  two domains  is always the calling relation but a domain nests procedures. '; 

The distinction between these two kinds of relation is important for error confinement  :   data % 
isolation   uses   the   calling   relation.    Intersection   between   the  contexts  of   two   components   related   in   the , 
calling  relation  is  reduced  to  the necessary  minimum,   i.e.   the set of parameters between  these components. > 

i 

Therefore, the error confinement principle implies not to use the nesting relation at least before 
some level of refinement. Error confinement exists between components generated at this level. This      ', 
approach is found in systems structured in domains, like ISAURE, where error confinement exists between 
domains but does not exist between lower level components inside a module (procedures, blocks). 

Some data have a life-time longer than the execution time of the components that use them (for      / 
example a whole session time for book-keeping data, or several days for files). Partitionned systems 
generally use the notion of "remanent data" : the value of a remanent data is preserved from one execution      • 
of the component which contains it, to the next one. 

2.2. Modularity and hierarchy in the ISAURE system 

The ISAURE system uses the error confinement principles as defined above. Its basic component is 
the module and the nesting relation appears only at refinement levels below module level. 

ISAURE is a multi-process system. A process runs in a hierarchy of modules. The run time context of 
a process, i.e. the set of objets reachable by the process, changes everytime a module is entered. 
Parameter passing is the only way modules can communicate. A parameter object belongs to a calling module 
and can be accessed from a called one as long as the process is running this module. 

A module is a set of closely related objects (resource, access functions, working data...). The 
ISAURE system runs on a capability-based addressing computer ; every access to an object is made through 
and under control of a capability (type control, object overflow control, right control). Then a list of 



6-3 

capabilities represents a module. Basic objects are segments like data segments or program segments, or 
capabilities segments (capability-list or C-list). 

calling module 

capability 
list 

resources 
working data 

Figure 1 : an ISAURE module 

Inter-process communications and resource sharing are made in particular modules : the monitors. So 
three types of modules are defined in the I5AURE system : 

. private modules or domains : they consist of a set of private objects accessed through a private 
C-list ; 

. general monitors or G-monitors : they allow inter-processes communication and resource sharing. A 
G-monitor is re-entrant and consists of a set of shared functions (procedures), one or more shared 
resources and a set of private data allowing re-entrance (i.e. one set of data per process). Each hierarchy 
owns an actual occurence of such a G-monitor, that is a private C-list ; 

Process 1 

D Procedures 

D 

n 
n shared resources □ 
private 

D 
data 

D 

Process 2 

- Figure 2  :   a G-monitor - 

. simple monitors : they are shared, but not re-entrant. Their implementation is far easier than 
for G-monitors. Not private data are needed in such a module and every object is shared ; neither re- 
entrance nor synchronization is to be ensured. Such a monitor is represented by a shared C-list, and all 
processes may access it. This kind of module turned out to be efficient for basic resource management 
(virtual  memory  overflow  management,   for example)  or  for specific processing (error  messages  management). 

Process 1 

Process 2 

D 
n 

n 

a 
- Figure 3 : a non re-entrant monitor 
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Every module in the ISAURE system is described by an interface and a body. 

The interface describes the external aspect of the module (entry points, parameters) for calling 
modules. The body describes the set of internal objects of the module (data, procedure) and the set of 
called modules. 

The interface and the body description are both divided into a normal and an exception area ; the 
last one is described in the next section. 

INTERFACE file ; 
ENTRY readitem : 

key : keyitem (R) j %  read only access (keyitem = predefined type)!S 
buffer : item (W) ; %  write only access (item = predefined type)S 

END 
ENTRY writeitem : 

key : keyitem (R) ; 
buffer : item (R) ; 
END 

EXCEPTION AREA ; 
<exception area> 

END ^interfaces 

PATTERN file ; 
SHORT DATA (R,W) iSexample of dataS 

V;^, V2 : TALLY ; 
d     : DOUBLE ; 

END 

Ptfile : CAPABILITY (R,W,C) ; %  pointer of fileS 

p^    : IPROCEDURE ; ^       %  internal procedure^ 

CALLED mem-alloc (getframe, releaseframe) ; %  called module^ 
EXCEPTION AREA ; 

<exoeption area> 
END %  pattern % 

-  Figure 4 : an exanple of ISAURE system - 

3. ERROR RECOVERY IN MODULAR SYSTEMS 

Several steps can be distinguished in fault treatment ; 

. error detection ; 

. error localization that is determinating what objects caused the fault, and evaluating damage ; 

. error recovery consisting of ; 
* damage repair, that is putting the system back into a coherent state ; 
* restarting execution from this coherent state. 

This state is either the current state (forward error recovery) or a previous coherent state 
(backward error recovery). 

The above defined functions are called curative processing ; sometimes they imply preliminary 
processing (that we shall name "monitoring functions") such as safeguard in a backward error recovery 
strategy. We shall name "exception handling" the set of all these functions and "exceptions", the events 
which start them : error detection or monitoring function call. 

3.1. Exception handling in modular systems 

Exception handling in hierarchical and modular system is based on the principle of error masking : 

. we try to recover an error in one component, i.e. to mask the error for the upper level 
components ; 

. if this recovery cannot be done, the error is propagated toward the immediate upper component 
where error masking will be tried again. 

The important problem which is set up is to know at which level error masking is possible ; we 
shall name this level the recovery level. Error recovery cannot be done in one component either when error 
localization cannot be done inside this component or when error localization shows that upper levels are 
involved in the error. Therefore, determining the recovery level depends on error localization : the 
recovery level is the highest level involved in the error if localization has precisely determinated this 
level or an adequate level which ensures recovery by an over-estimation of the error effects. 
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Viewed from a component, a detection of exception is : 

. an internal detection, made by an explicit detector or assertion ; 

. or an implicit detection coming from a lower-level component (hardware or software) and signaled 
by an exception raising mechanism. 

When an exception is detected, it must be taken into account even if its causes are unknown ; every 
exception must always be associated with a handler. Dynamic association between exceptions and handlers is 
interesting to provide flexibility in programs. 

Exception handling consists, as formely said, in restoring data in a consistent state and in 
restarting the normal processing. Consistency generally concerns data at several levels. A handler located 
in a module cannot correct erroneous data in lower levels, and must therefore call some recovery functions 
at these levels ; we shall name sub-handlers the functions recovering residual informations. 

Restarting normal processing corresponds to the end of an exception handler on the recovery level ; 
two kinds of restart must be considered ; 

. a return to the running point, i.e. after the operation which raised the exception ; it 
corresponds to a forward error recovery and we shall call it a CONTINUE restart ; 

. a new execution of the operation in which the exception was raised ; it corresponds to a 
backward error recovery and we shall call it a RETRY. 

If the current level is not the recovery level, a handler must raise an exception for a higher 
level ; we shall call this case an ABANDON. 

3.2. Tools for exception handling in ISAURE 

We have so far used in this section the general term "component" without saying anything about its 
nature : module, procedure, block... A module is the basic component in the ISAURE system : declarations of 
exceptions and handlers are made as any other declaration at the module level. Nevertheless, some 
exceptions deal with components smaller than a module (e.g. a procedure or an instruction) and recovery 
must be provided at their level. In order to solve this problem a recovery level may be associated to an 
exception inside a module ; we shall see that the recovery level associated to an exception will be induced 
by the location of the association between the exception and a handler. 

We are now going to present the choices that have been made in the ISAURE system, beginning with 
linguistics tools. As we have seen in the previous section, an ISAURE module is divided into two areas : a 
normal area and an exception area, which brings modularity and independence between normal and exceptional 
treatments. Declarations and associations presented below will be located in the exception area of the 
modules. 

calling module 

exported exception 

normal area "^\   exception area 

n   ° I I local-explicit 

f<iiS«. 

exceptions 

D    D 

handlers 

association 
stack 
echanism 

call to a 
sub-handler 

Figure 5 : Exception handling in a nodule 

3.2.1. Declaration of exceptions 

We can find two kinds of exceptions in a module : 

. local exceptions. They are either explicit and declared in the exception area of the module or 
implicit, i.e. defined and raised by lower level modules ; 
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. exported exceptions. They are explicit and declared in the interface of the module in order to be 
reported to the calling modules. 

Let us point that an exported exception of a module is considered as a local and implicit exception 
by a calling module. Exceptions raised by hardware are a particular case of implicit exceptions in a 
software module and are predefined in the language. 

1 
3.2.2. Declaration of exception handlers and sub-handlers 

An exception handler is a particular procedure in the exception area of a module. A sub-handler is 
a special entry point, defined in the exception area of the interface of a module (see figure 6). 

The translator verifies that a sub-handler is only called from the exception area of a calling 
module, i.e. by an exception handler. Let us point that calling a normal entry point of a module from an 
exception handler of a higher module is allowed and may even be very useful if we want, for example, to 
undo by a reverse function what has been done by an entry point, the reverse function being an other entry 
point. 

3.2.3. Definition of associations between exceptions and handlers i 

Associations in a module only concern local (either explicit or implicit) exceptions of the module. 
An association between an exception and a handler defines the handler to start on an occurence of the 
exception ; it may (optionally) also defines the restart mode (CONTINUE or RETRY) at the end of exception 
handling. 

Syntax       [<exception-name> —> <handler-name>   {(<restart-mode>)}] 

Example      [errformat —> salvation] 

[b —> backup (RETRY)] '■ 

Two kinds of assocations are possible : i 

. Statics associations 

A static association is valid during the whole execution in the module. It may be an explicit 
association defined in the exception area of the module. 

For an implicit excep);ion, i.e. an exception raised from a lower module, it may be an implicit 
association ; this kind of association and the handlers associated are predefined and stored in a library. 
So implicit handlers and associations are predefined for exceptions raised from hardware or basic parts of 
the operating system so as to avoid the programmer to always take them into account. 

An implicit association prevails over an implicit association. 

. Dynamics associations 

They are explicitely defined inside the program. The scope of a dynamic association is a component 
(procedure, block, or instruction) ; this component depends on the location of the association definition : 

. it is the called procedure for an association defined after a procedure call instruction ; 

. it is a block for an association defined after a "begin" keyword ; 

. otherwise, it is the instruction which comes before the association. 

Assocations concerning one exception are recorded on a stack so that the association of the finest 
level may prevail : an association on the instruction level prevails over an association on the block level 
which prevails over an association on the procedure level which prevails on a static association (module 
level). 

3.2.4. Occurence exception 

An implicit exception is raised from a lower level module. It is an implicit occurence of exception 
for the current module. 

An explicit exception is explicitely raised inside the current module by an assertion test. 

Syntax       IF <condition> RAISE <exception-name> 

If the exception is a local exception, its occurence will lead to the execution of the associated 
local handler. If it is an exported exception, its occurence will be transmitted to the calling module. 

Remark : An occurence of an exception (local exception) for which there is no association, activates a 
standard default handler (the same for every exception) which sends a message to the user and raises an 
exported exception (i.e. ends by an ABANDON). 

\ 
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3.2.5. End of exception handling 

The execution of an exception handler ends on one of the following instructions : 

. RAISE <exported-exception> : the handler raise an exception for the calling module ; 

. RETRY : the execution of the component interrupted by the exception occurence is retried. The 
restarted component (module, procedure, block or instruction) is given by the association stack formerly 
mentionned ; 

. CONTINUE : the execution restart at the end of the interrupted component ; 

. RETURN : the restart mode (RETRY or CONTINUE) is given by the association used on the exception 

occurence. 

3.2.6. Hardware and microprogrammed features 

We consider only tools that concern fault tolerance and just list them without any details. 

We can distinguish two categories ; 

. features for error detection and error confinent : 
* classical hardware controls : parity check, transfer check, 
* capability-based addressing with type, access right and overflow controls, 
* instructions for domain commutation : ENTERDOM instruction with parameter passing and RETURNDOM 
instruction. 

. features for exception managenent : 
* instructions for software exception raising : RAISE instruction for any internal exception 
starts the execution of a local handler ; RETURDOM instruction for an exported exception reports 
the exception up to the calling module ; 
* handler starting mechanism : it takes into account the exception raising and uses an execution 
transfer stack which is updated by associations ; 
* special return instructions : they implement the handler ends (RETRY or CONTINUE modes). 

3.2.7. Software features 

Software features for exception handling are distributed throughout the whole ISAURE operating 
system. In the next section we will just present errors recovery in the ISAURE data base. 

A. ERROR RECOVERY IN THE ISAURE DATA BASE 

4.1. Organization of the ISAURE file management 

A file is composed of one or several "groups". A group is a set of linked pages of virtual memory 
(we shall call them "frames" according to the constructor terminology) ; it contains a sequence of items. 
Items are delimited by a special separator byte. The first field of an item gives the length of the item, 
the second field is the key of the item. 

So, a file is composed of two types of informations : structure description (links for frames, 
separators and length of items) and user data. 

link I 

lengtht key f content of the ith item ^ 

A group = A set of linked frames A group = A sequence of ite 

Figure 6 : file structure 
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In the ISAURE operating system each active file is encapsulated with its acces functions in a 
module (a private module if the file is not shared or a G-monitor in the other case ; of. §2). The module 
are integrated in the following hierarchical structure. 

process i 

I 
JCL module 

JL 
user program 

File management 

memory allocator 

(*) 

(»)    process j 
^'''^ (shared file) 

(*x) 

(x*x) 

(*)    private module 

(s*)   G-monitor or 
private module 

(xx*)  non-reentrant 
monitor 

Figure 7 

In the context of business applications, a user program deals with cyclic or repetitive executions. 
We shall call transactions these executions. A transaction uses the services of a file management module 
for access operations on a file. A file management modules uses the services of the memory allocator 
monitor to get and release virtual memory frames. 

4.2. Objectives of the exception handling 

An incident may have various origins (user mistake, software or hardware failure) and may cause a 
loss or an alteration of information in the data base. The damage may be limited to structure information 
or may be spred also to user data. In the first case detection, exception raising and exception handling 
are realized in the file module where structure organization is known whereas in the second case they must 
be located in the user module for a more global restoration. 

The objective being to recover the various informations (partially or entirely),several recovery 
strategies are proposed : recovery of the structure with a SALVATION HANDLER or entire restoration of all 
information with a BACKUP HANDLER /17/. 

In the following paragraphs, with previous formalism and tools, we present the scheme of the 
general strategy and we detail the principles of the two programs ; first we consider a context of non 
interactive processes and then we look at the case of shared files. 

4.3. General scheme of the strategy 

modules. 
The strategy of data base recovery concerns essentially the user program and file management 

In normal running, the user module calls periodically a safeguard handler by raising a monitoring 
exception associated with it to prevent a data base error. Its role is to record a copy of modified data. 

During the execution of its operations, the file management module controls and tests various 
assertions ; when a test is negative, an exception is raised and the associated handler is called ; two 
cases must be considered : 

. local exception ; the associated local handler is named SALVATION HANDLER ; 

. exported exception with propagation to the user module ; the associated handler in this last 
module is named BACKUP HANDLER. 

Note that the SALVATION HANDLER can restore only a partial coherent structure in this case ; the 
user module may call the BACKUP HANDLER for a total restoration. 

In all these strategies the executions of handlers need the call of the virtual memory allocator 
monitor to release residual frames and to ensure a correct state of memory. The figure 9 gives an 
illustration of this discussion and figure 8 presents an example of the programming formalism. 
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INTERFACE  user  ; 
ENTRY  transaction ; 

END 

PATTERN  user  ; 
key : keyitem (R,W,P) ; 
buf :  item (R,W,P) ; 

operate  :   IPROCEDURE  ; 
CALLED file (readitem,   writeitem)  ; 

EXCEPTION  AREA  ; 
s,b : EXCEPTION  ; 
herrfile : HANDLER ; 
safeguard : HANDLER ; 
backup : HANDLER ; 

[errfile —> herrfile] ; 
[s —> safeguard (CONTINUE)] ; 
[b —> back up (RETRY)] ; 

END 

PROCEDURE transaction ; 
BEGIN 

%  initial processing % 

test := TRUE ; 
WHILE (test) DO 

BEGIN 
RAISE s ; 
ENTER file, readitem (key,buf) 

%  internal procedure % 

%  statics assocations % 

%  explicit occurence 
S module call % 

operate ; [errfile —> backup (RETRY)] ^procedure call* assoc ^ 
ENTER file, writeitem (key, buf) ; 
END 

RETURNDOM ; 
END 

INTERFACE file ; 
ENTRY readitem : key : keyitem (R) ; buffer : item (W) ; END 
ENTRY writeitem : key : keyitem (R) ; buffer : item (R) ; END 

EXCEPTION AREA ; 
errfile : EXCEPTION ; 

END 

PATTERN file ; 
!S declarations of normal data and procedures (cf. figure 4) % 

CALLED mem-alloc (getframe, releaseframe)  % called module % 
EXCEPTION AREA ; 

errformat : EXCEPTION ; S local exception S 
salvation : HANDLER ; 

[errformat —> salvation] 
END 
PROCEDURE readitem ; 

S static association K 

%  description of procedures % 

Figure 8 : user and file modules 
-JCL MODULE 

FILE MODULE  
reidltem errf 

(S 

rfnT-T.J!- /salvacioa     -y 

y-^^r^ .  RESTO!   ' ' errfor-T-Ai-    ' ' 

□    g 
'ORE 

Current file 

SAVE 

oaCL-cug file 

•MEM-ALLOC MODULE 
Figure 9 : Recovery strategy in ISAURE file management 
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Recovery of information structure ; the salvation handler 

Its objective is to set back up, when possible, the links between frames or the length of items 
from redundant informations (forward and backward links between frames, lengths and separators of items). 
This handling does not ensures that the file will be entirely repaired ; for example it doesn't repair user 
data damages. i 

Total recovery of the file i_  the backup handling 

Its objective is to allow the recovery of all user's and structure informations in a consistent 
states. To this end, two handlers have been implemented : 

. a preventive handler (the safeguard handler) which starts during normal processing. It 
establishes a checkpoint by recording a copy (a "backup version") of the current, presumably correct, state 
of the file. This recording is made after a fixed number (which may be modulated) of modifications in the 
file ; 

. a currative handler (the backup handler) which starts when a crash is detected. It restores the 
file in a correct state, i.e. the state of the previous checkpoint. 

4.4. Case of interactive processes sharing one or several files 

The recovery of interactive processes sharing files leads to the problem of coherent restoration 
and restart for all process /18,19/. 

For that purpose, we use the notion of transactions for the synchronization of the safeguard of 
these shared files : a safeguard may occur when each process is at the beginning of a transaction. Thus, 
each beginning of transaction is considered, for a process, as a possible recovery point (called an 
aptitude point) and raises an exception (the "aptitude exception"). 

The safeguard is automatically invoked each N transactions (this frequency is a parameter of the 
application) when the current process starts the transaction. The safeguard handler will be actually run 
when all the other processes will have raised the aptitude exception, safeguard and aptitude handlers 
having then locked all the processes. 

Figure 10 gives an illustration of the above discussion. 

safeguard aptitude point 

recovery 
line 

recovery 
line 

Figure 10 

When an incident occurs in the system or in a USER module, recovery consists in activating the 
backup handler which restores the state of the last checkpoint of the file and which informs users of the 
transaction number from where to restart. 

To implement this strategy we have integrated monitoring exceptions of aptitude inside USER modules 
and synchronization manager inside FILE modules. 

Coherence for several files 

We will discuss this problem with the example of two processes PI and P2 which share the file F2 
and which own a private file, respectively Fl and F3 (see figure 11) : 

Suppose that PI raises a safeguard exception : file Fl can be saved but in the case of F2 we must 
wait for an authorization of P2 (aptitude exception). In this context, to maintain coherence if an incident 
appears, it is necessary to ensure the saveguard of the three files at the same time. So a checkpoint 
concerns a set of files and not only one file and is effectively done only when the aptitude exception has 
been raised by all the processes using at least one of these files. 
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Figure 11 

5. CONCLUSION 

Modular and hierarchical conception of the ISAURE system has allowed us to carry out the error 
confinement and recovery principles and to develop appropriated techniques and tools. 

The error recovery functions in the files which were presented in the last section of this paper, 
show an example of using these tools. 

These principles and tools have been used in specification and implementation of every function in 
the ISAURE system : virtual memory management, overflow management, directories or commands management. 

We can say to conclude that the interest of the ISAURE system stays in using a set of techniques 
and in trying to define the best association of them for the system reliability ; stepwise refinement 
conception method, modularity and exception handling features in the programming language, error recovery 
techniques in data base, error confinement features, capability-based addressing machine. 
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OPTIMAL DETECTION OF SENSOR FAILURES IN FLIGHT CONTROL SYSTEMS 
USING DETERMINISTIC OBSERVERS 

by 
Norbert Stuckenberg 

Institut flir Flugfiihrung, DFVLR, Flughafen 
D-3300 Braunschweig-Germany 

SUMMARY 

A failure detection scheme for sensors of a flight control system is presented. Based on analytic 
redundancy a duplex sensor configuration provides the fail-operational capability of a conventional 
triplex sensor system. This is achieved by using deterministic observers. It is shown how the performance 
of the failure detection scheme can be determined. With respect to this performance criterion the optimal 
observer is derived. Thus, the performance eventually achievable by an optimal failure detection scheme is 
also described. The operational feasibility of the proposed concept is demonstrated by flight test 
results. 

1. INTRODUCTION 

Reliability plays a vital role in flight control systems of today and in those of the future. 
Particularly the most attractive control concepts such as artificial stability for the enhancement of 
maneuverability and flight economy require control systems of extremely high reliability. Traditionally 
this requirement is fulfilled by using multiple devices in the vital parts of the control systems. For 
example, it is necessary to triplicate the hardware and to add a majority voting mechanism in order to 
achieve a fail-operational capability. 

However, it is obvious that the conventional hardware redundancy has many disadvantages due to costs, 
weight, volume, energy consumption, failure rates and maintenance costs. Therefore it is reasonable to 
look for alternative methods which reduce the necessary efforts in hardware without loss of reliability. 

For the sensor part of a flight control system a starting point for the reduction of hardware is the 
fact that the signals which have to be measured are output signals of one single plant. The plant itself 
is given by the aircraft motion described by the flight mechanics equations. As analytically given by the 
equations, the plant outputs are internally coupled. These relations can be used for reliability purposes. 
Herewith, the hardware redundancy can be replaced by the so-called analytic redundancy. 

The basic tools for utilizing the analytic redundancy are filters and observers. Their algorithms have 
to be implemented into the signal processing part of the control system. Thus sensor hardware is replaced 
by computer software. 

In recent years several methods have been developed following the described common idea on different 
ways |1|, |2|, |3|, |4|, |5|, |6|. In this paper a concept |6| is proposed omitting the third sensor of a 
triplex sensor system. Nevertheless, the fai1-operational capability is to be maintained. This is achieved 
by analytic redundancy performed in deterministic observers. 

2. SYSTEM OVERVIEW 

2.1 The closed loop control system 

Fig. 1 shows the general structure of the complete system partitioned into the closed loop control 
system on the one hand and into the failure detection on the other hand. 

The closed loop control system consists of the plant, a duplex sensor configuration, a sensor 
switching device and the controller. The plant is given by the flight dynamics of the aircraft, forced by 
the control signals and the disturbances such as air turbulence. The output of the plant is defined such 
that the resulting vector y contains as much information about the plant state as it is needed for the 
control problem. The output signals are measured by sensors which are put into a duplex sensor 
configuration resulting in two identical sensor packages (SP). Hence, either SP includes one sensor of 
every sensor type (ST). As far as no sensor failure occurs the resulting two measurement vectors z, and z^, 
are identical. 

These two sets of measurement signals are fed into a controller via a sensor switching device. In this 
device the output signals of a failed sensor is cut off. Output signals of good sensors only can pass. 
This is shown in fig. 1 for a sensor type i according to the following scheme: 

No sensor failure:  The sum of both sensor outputs z., and z., multiplied with the factor 0.5 is fed to 
the controller. '     ^"^ 

Sensor i in SPl    Only the signal z.„ of the corresponding good sensor of SP2 is fed to the controller, 
failing: ^'^ 

Sensor i in SP2    Only the signal z., of the corresponding good sensor of SPl is fed to the controller, 
failing: ^' 

This scheme applies to each of the existing sensor types (in fig. 1 shown for ST i only). The switch 
command signal is generated within the failure detection logic as part of the failure detection. 
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The controller is supposed to be designed such that the closed loop control system meets the usual 
requirements, i.e. good response to command Inputs and an effective suppression of disturbances over a 
certain area of the flight envelope. 

2.2 The failuredetection 

The failure detection part of the complete system shown in fig. 1 consists of two identical 
deterministic observers and a failure detection logic. The observers operate in the usual way. A 
mathematical model of the plant is driven by the control signals already mentioned as input signals to the 
real plant. The output y of the model is an estimate of the real plant output y. The difference vector 
between the measured output z, (or Zj, resp.) and the estimated output y, (or y„ resp.) in this paper 
called the observer difference is fed back to the plant model via the observer gain matrix. 

The two observers shown in fig. 1 are used to provide the information about whether a sensor has 
failed in SPl or SP2. This capability is evident from the following state equations. , 

Let the plant be given as the linear system in the usual notation: 

X = Ax + Bu + w 

y = Cx 

Failures defined as additive signal vectors v, and v„, respectively are given as: 

z-i = y + v^ = Cx + v-| 

Zp = y + v„ = Cx + V- 

Given an observer gain matrix K the state equation of observer 1 is: 

x^ = Ax, + KCx + Kv, + Bu - KCx, 

and of observer 2: 

1 
t 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

9.^  = AX2 + KCx + Kvj + Bu - KCXg 

Using the estimation errors defined as: 

m, = X - X, 

m- = X - Xj, 

the observer dynamic is reduced to the state equation: 

(2.6) 

(2.7) 

(2.8) 

m, = (A - KC) m, - Kv, + w 

n^ = z^ - y^ = Cm^ + v^ 

and with respect to observer 2: 

m„ = (A - KC) m- - Kv„ + w 

n^ = z- - y~ = Cm„ + v- 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Equations (2.9) to (2.12) show that the failure vector v, affects the difference signal n, of observer 
1 only whereas the failure vector v- correspondends to the observer difference n„ only. Secondly, the 
influence of the disturbance vector w is identical in either observer difference. Since this disturbance 
influence is supposed to be limited, the maximum disturbance response can be used as thresholds for the 
failure detection task in the following way. 

Given are the thresholds n.-j- of each element n., and n.„ of the vector n, and n„. If one or more 
elements n.^ of observer 1 increase beyond their respective Thresholds n.-j-, it is certain that a sensor 
failure hai occurred in sensor package 1. Equivalently an occurrence ofM sensor failure in SP2 can be 
seen from the response of the observer difference vector n^. 

The final localization of a failed sensor within the SPl (or SP2) is accomplished by the simple 
comparison between the output signals of the corresponding sensors of the same type. This part of the 
failure detection is identical to that used in the conventional hardware redundancy concepts. 

Based on these relations the failure detection logic is defined by the following statements: 

Iz. il z.^l 4 0 

'"ll ' ^ "IT' ^ ' '"21 ' ^ "2T'^' 

'"12' > "IT' ^ * '"22' -^ "2T'"^' 

sensor failure in ST i 

sensor failure in SPl 

sensor failure in SP2 

(2.13) 

(2.14) 

(2.15) 
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Using these statements a failed sensor is clearly localized. Then, switch-off actions are taken as 
described in section 2.1. 

In conventional applications observers are used to provide additional information about the plant state 
in order to improve the control performance in a certain optimal way. Differing from those systems which 
integrate the observer into the closed loop the present concept uses the observer in an open loop 
configuration. This offers the opportunity to attach at either sensor package further observers in 
addition to the single one represented in fig. 1. These additional parallel observers would support each 
other with respect to their common failure detection task. 

Up to now the derivations have been made assuming that there are no deviations between the plant and 
the plant model inserted in the observers. However, in the real world deviations always exist. In the 
proposed concept these model errors act in the same way as the disturbances considered so far, again due 
to the fact that the observers operate in an open loop configuration. Hence, limited model errors have a 
limited effect on the observer differences, too. For instance, they do not yield instabilities as they 
could do if an observer is used within a closed loop configuration. Consequently, in the remainder of this 
paper the disturbance vector w is supposed to include both the real external disturbances and the inner 
disturbances due to model errors. 

3.  THE FAILURE DETECTION PERFORMANCE OF A GIVEN OBSERVER 

3.1 Performance definition 

The task of the concept described is to guard the control system against the effect of sensor 
failures. The statements of eq. (2.13) show that in principal it is no problem to identify the type of the 
faulty sensor. However, it is the intrinsic problem of the proposed concept to indicate whether SPl or SP2 
contains the faulty sensor. This is due to the nonzero thresholds of the observer differences which result 
in the possibility of a sensor failure also reaching large values until being identified in one of the 
sensor packages. This means that the control system can undergo deviations from its desired path, too. 
Hence, it is obvious, also from fig. 1 and from the state equations, that a sensor failure causes two 
competing effects: 

- The closed loop control system can be driven away from the desired nominal trajectory. 

- At least one of the observer differences of the respective observer is driven beyond its threshold, by 
that indicating the faulty SP. 

For a given system, i.e. a control system with given feedback gains and observers with fixed observer 
gain matrices, the identifiabil ity of a sensor failure depends on the one hand on the magnitude of the 
disturbance thresholds and on the other hand on the magnitude and the signal character of the sensor 
failure itself. For both signals worst-case assumptions have to be adopted. As far as the disturbances are 
concerned, the worst-case requirement is already fulfilled by defining the disturbance threshold as the 
maximum disturbance response. As far as the sensor failure itself is concerned, no assumptions and 
preconditions of any kind are permitted. The identification system has to cover all kinds of sensor 
failures, particularly the most unfavorable one. This worst-case failure signal is the one which causes a 
great deviation in the control system output and has a low sensitivity with respect to the observer 
differences. Thus, the performance of the detection system with respect to a failure in a certain sensor 
has to be defined using the following value: The maximum response of a control system output due to that 
failure input which is not able to drive one of the observer differences beyond its threshold. The lower 
this particular deviation of the control system the better the detection performance. 

3.2 Transformation to an optimal control problem 

Now, the performance of the failure detection has to be calculated. According to the previous section 
it is necessary to weigh the sensor failure response in the control system and the sensor failure response 
in the observers against one another. 

These two competing relations can be derived from the following concise representation of the relevant 
state equations. 

A - KC 

BRC l/gCBR). 
(3.i: 

n. = C.m + V. 

n . = C^m 

^k = C^x 

, j + i 

, k = i,j 

(3.2) 

(3.3) 

(3.4) 

In this representation the control law of fig. 1 is chosen to be a linear feedback given by the gain 
matrix R. Furthermore, these equations apply to failures v. from either SP. Consequently, the indices 1 
and 2 for identifying the two SPs and the two observers are omitted. Henceforth, an index identifies the 
element of a vector or the row (column) of a matrix respectively. A block diagram representation of equ. 
(3.1) to (3.4) is given in fig. 2a. Using this figure the worst-case sensor failure as input signal to two 
separate systems will be discussed. Once the disturbance thresholds n.-j. and n ..j. are fixed, the worst-case 
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failure input v 
under the cons 
thresholds. 

V. is that signal which forces the control system output y. to the maximum response y. 
traint that the simultaneously forced observer differences n.^ and n .^ remain within tn???^ 

Though forced by the common input signal v. the direct relation between the output signals of two 
separate systems is essential for the determination of the detection performance. This direct relationship 
can be derived by proceeding from the common description of the two systems in equ. (3.1) to (3.4). The 
output equ. (3.2) is transformed into , 

and 

n. - C.m (3.5) 

V. used in equ. (3.1) again. VJhat results is a transformed system 

A - KC + K. C. 

1/2(BR). C. A - BRC l/2.(BR).j 

(3.6) 

n . = C .m 
J   J j + i 

y,^ = C|^x ,    k = i,j 

(3.7) 

(3.8) 

The output n^ of the original system is now defined as the input of the transformed system. This is 
possible since in the output equ. (3.2) the input v. was contained in a direct superposition. The 
equivalence of both representations also becomes apparent from the block diagrams shown in fiq. 2a and 
fig. 2b. , . , 

The problem of the greatest effect of a sensor failure which is still just undetected can now be 
described more simply with the aid of the block diagram of the transformed representation: What is sought 
is the maximum value of an output y|^ which can be generated by the now limited input n.. Within the 
limitation n.^ the input signal n. can assume any given signal behaviour. Additionally, the ^ther observer 
differences r'l. have to be kept within their respective limitations n.^. The time for reaching the maximum 
value y,   is unlimited. J' 

Thus, the problem of the greatest effect of an undetectable sensor failure and with it the failure 
detection performance is reduced to an optimal control problem. The solution methods known for problems of 
this nature can be applied. Since for such problems the solutions cannot be stated in the form of complete 
formulae usually they must be found specifically for each case. The solution process for a concrete 
example is carried out in |6|. Only the principal characteristics of a solution will be stated at this 
point. 

3.3 The worst-case failure signal 

For a qualitative example fig. 3 shows the optimal time histories which lead to a maximum value y, 
given an input n^ which is constrained by the threshold n.-,. For a system with a limited input the optTi^il 
control theory (maximum principle) requires positive and I'legative maximum values as input signals. Hence, 
the rectangular function n°^ in fig. 3 is found to be optimal in terms of optimal control. I.e., from the 
failure detection point of view it is the most adverse one. The switching instants are determined by the 
switching variable q alternating its sign. The system output y, is forced by the optimal control signal 
n°^ to reach the maximum value when the final time t^ goes to irfrinity. However, in pratical applications 
t^ remains finite. As it can be deduced from optimal control theory the optimal input signal n°. is not 
periodic for systems of an order >_ 2. Again, in practice the rectangular function n°. oscillaies with 
nearly constant frequency. '' 

Once the worst-case input n°. and its response m°. of the transformed system of fig. 2 is determined, 
the equivalent worst-case failure signal v°. itself ii given by the relation 

C.m° 
1 (3.9) 

It turns out to be a discontinuous function as shown in fig. 3. In terms of the original system 
representation of fig. 2 this input signal v°. would create the greatest response in the output y, of the 
control system without the respective observer difference n. exceeding its threshold n. 

T       ^ iT 

In fig. 3 the threshold n ... of the other observer difference n. was not effective since the signal n. 
remained within this limitatirin. However, given a threshold n ., loiJer than the maximum values of n. showri 
in fig. 3 the most adverse solution has to shift. As derived" in |61 the worst-case failure signal v. is 
determined now such that the observer difference n. becomes a rectangular function with a shiHed 
frequency. This new switching frequency is defined such that the other observer difference n. just reaches 
its threshold n.-j.. The maximum values + n.-j- of the rectangular observer difference n. are'^ retained. Of 
course, the maxttnum output y, of the control system is smaller now, i.e. the performance of the failure 
detection has improved.    ™^^ 

A chance to lift the performance furthermore can be used by attaching an additional filter at the 
observer difference n. as illustrated in fig. 4. The filter output n.,- is implied into the failure 
detection procedure in'^the same way as the original observer differences rl. and n. are. The filter itself 
has to have a sensitivity with respect to the just discussed frequency. But '?t is as insensitive as 
possible at other frequencies. Hence, it can be assumed that the response to disturbances is small. Thus, 
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the new threshold n .p^ defined as the maximum response to these inputs is small, too. The worst-case 
failure signal v^ ha'i to be changed again in such a way that the filter output n^^ also just reaches its 
threshold n-p-j-. Consequently, the maximum output 
failure detection has been improved. 

'kmax of the 
filter output n.p 
control system iia nas decreased, i.e. the 

Let the system matrix (A - KC + K.C.) be unstable such that the response C^ra to even small inputs n^ 
becomes large. Then, also the controf System output y, is forced to large values via the element (BR).. 
This critical situation however cannot occur if via the system matrix (A - KC + K.C.) the output n. is 
driven to high values, too. Because this signal n. has to remain within its threshold h.-j. the signals^ C.m 
and y, are also kept on a lower level. However,'^in this case it is necessary that a"^ sufficiently high 
coupling exists between Cm and n.. In other words, the output C.m has to be observable from the output 
n.. Hence, it is a matter'' of the'^uncontrol led plant, i.e. the system matrix A and the output matrix C. 
TJIeir properties eventually define the range of applicability of the proposed concept. 

4.  THE OPTIMAL OBSERVER SUBJECT TO THE SENSOR FAILURE DETECTION PROBLEM 

4.1 Sensor failures, disturbances and performance criteria 

In the previous chapter we have analyzed the performance of the failure detection on the condition 
that the observer dynamic is given. However, the proposed concept fixes the observer structure only as 
shown in fig. 1. The elements of the observer gain matrix are still free to be chosen. Hence, two 
principal questions arise: 

- How has the observer gain matrix to be chosen in order to yield the optimal observer with respect to the 
failure detection task? 

- Which is the eventual performance of this optimal observer? 

Since the structure of the observer is that of a Kalman-filter, one could think of using its 
optimization techniques for the design of the observer in the present case, too. However, a comparison 
list concerning the design criteria and further assumptions of the two cases shows that there are 
considerable differences. 

Kalman-filter Sensor failure detection observer 

Sensor fai 
(measurement no 

lures 
ise resp.) 

stochastic signal with zero mean, 
white noise spectral density 
and Gaussian distribution 

deterministic, discontinuous, 
aperiodic signal according to 
section 3.3 and fig. 3 

System n oise 

stochastic signal with zero mean, 
white noise spectral density and 
Gaussian distribution 

those deterministic and/or 
stochastic disturbances which 
cause the maximum response of 
the observer differences 

Performance criterion 
1 

minimum mean-square-error between state 
and estimated state 

minimum amplitude of a control 
system output due to a not de- 
tected sensor failure 

Table 1: Comparison of the Kalman-Filter and the sensor failure detection observer 

This comparison given in table 1 shows that the design of the observer as a Kalman-filter cannot be 
optimal with respect to the sensor failure detection task. As far as the measurement noise is concerned', 
the two signals differ not only in the way they appear but also in the way they are determined. In the 
Kalman-filter case the measurement is an independent signal whereas in the present case the sensor failure 
is dependent on the observer dynamic itself as was found in chapter 3. Thus, under these difficult 
conditions it seems to be almost impossible to find the observer gain matrix without easing off the strict 
assumptions given in table 1. 

Hence, a suboptimal solution is sought by replacing the assumptions stated in table 1 by the following 
approximations. 
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Sensor failure signals: 

Fig. 3 has shown that in practice the worst-case failure signal v°. can be assumed as a periodic 
signal. Furthermore, its discontinuities ought to be neglected. Thus, the approximate worst-case failure 
signal shall be determined as a stationary harmonic signal. Its frequency cannot be determined yet because 
at this point of the considerations it is still a matter of the observer dynamic. 4 

Sytem noise: . .     ■■' 1 

The deterministic part of the disturbances is approximated by a harmonic signal. As far as the 
stochastic part is concerned it is assumed that it can also be approximated by an equivalent harmonic 
signal. The justification will be given in the next section when the frequencies of both the sensor 
failures and the disturbances are determined. 

Performance criterion: 

The ampltiude of the failure signal just not detectable by the observer shall become as small as 
possible. This is a slight modification of the performance criterion used in the previous chapter. 

Now, the overall design procedure of the observer can be considered as a two step approach. First, the 
optimization can be carried out according to the approximations given here. Secondly, the final 
performance of the failure detection has to be assessed on the basis of the more rigorous conditions 
established in chapter 3. 

4.2 The failure signal frequency 

In the foregoing section it has been shown that the optimization of the observer is a deterministic 
problem. Both the failure signals and the disturbances are supposed to be harmonic signals. The frequency 
of the sensor failure signal has to be determined under the constraint that the relationship between the 
failure signals and the observer dynamic covers the most adverse conditions. Let us now discuss this 
problem by using an example based on a second-order system. 

For a 2nd-order system the failure detection problem is reduced to the block diagram represented in 
fig. 5. In this example the following assumptions are established: 

- The output matrix is the unity matrix: C = I 

- Failure in sensor 1: failure signal v, 

- Failure detection at observer difference n„ 

Thus, the respective state equation becomes: 

"m; 

nio 

= A - K 
m/ 

- h ^  + 
W2 

(4.1) 

The disturbances w, and w^ are independent signals. Hence, it is sufficient to carry out the 
derivations with respect to the signal w^ only and to apply the results to the other signal w- thereafter. 

From equ. (4.1) Laplace-transformed transfer functions can be derived: 

Sensor failure response: 

si - (A - K) 
n2(s) =  -t adj v^(s)    Z^(s) 

det (si - (A - K)"\ 

Disturbance response: 

si - (A - K) 
n2(s) = — adj 

W, (s) 

det (si - (A - K)\ 

N(s) 

w 

N(s) 

v,(s) (4.2) 

w, (s) (4.3) 

Now, the input signals are assumed to be harmonic oscillations. The respective frequencies"  and u 
are first assumed to be arbitrary but distinct, i.e.: v    w 

0)   ^ bi 
V   w (4.4) 
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The amplitudes of the stationary harmonic response of the observer difference ng are: 

and 
lN(j(.^)| 

In equ. (4.6) it is also stated that the stationary amplitudes ^2(0^^)I representing the maximum 
disturbance response have to be defined as the threshold n^-r. 

The detection of the harmonic failure v, is established as soon as the harmonic failure response 
|np(jiii )| reaches the threshold n^j, i.e.: 

|n2(j"jl = n^^ (4.7) 

Using equ. (4.5) and equ. (4.6) in equ. (4.7) yields a direct relationship between the disturbance w, 
and the just detected sensor failure v, (or the maximum just not detectable sensor failure v,). 

|v,(j- )| =-^!^^^ '—    Iw,(ja> )| (4.8) 
'       ' \\ii%)\     |N(J-JI    ^ 

Applying the performance criterion of the previous section the amplitudes |v,(jii) )| have to be kept as 
small as possible. Equ. (4.8) offers the chance to achieve this objective via the common denominators 
Niji^ ) and N(ju) ) of the transfer functions given in equ. (4.2) and equ. (4.3). If the eigendynamic of the 
obset^ver is chosen like that shown in fig. 6 then the fraction !N( jui ) |/|N( ju^) I in equ. (4.8) becomes 
arbitrarily small. In physical terms: The observers sensitivity with respect to sensor failures is chosen 
as much higher than that with respect to the disturbances. 

Fig. 6 also demonstrates the favorable effect of a bandpassfilter already suggested in section 3.8 and 
fig. 4. This filter suppresses the effect of the disturbances and further amplifies the effect of the 
sensor failures. 

However, the filter effects just described are successful only if, actually, the frequencies of the 
sensor failures and the disturbances are distinct as presumed in equ. (4.4). Now, it has to be recalled 
that the observer system has to be able to operate under the most adverse conditions. From fig. 6 it is 
obvious that this case is given if the two frequencies coincide, i.e. if 

w (4.9) 

Under this constraint the detection of sensor failures is no longer performed via the observer 
eigendynamic because the denominators of the two transfer functions of equ. (4.2) and equ. (4.3) disappear 
in equ. (4.8). The failure detection performance can be optimized only by manipulating the remaining 
numerators. 

At this point it also becomes clear that it is justified to replace stochastic disturbances by an 
equivalent harmonic signal since the latter represents the more difficult problem from the failure 
detection point of view. The broad power spectrum of a stochastic signal could be covered by one or more 
parallel bandpassfilters in the way demonstrated in fig. 6 such that a high failure detection performance 
results. On the other hand a narrow power spectrum can be approximated by a harmonic signal as proposed in 
section 4.1. 

From the discussion presented it follows that first, an observer has to be optimized under the most 
difficult conditions of coinciding frequencies. The resulting failure detection performance is the crucial 
one. Secondly, other failure frequencies possible are covered by bandpassfilters or by another parallel 
observer provided with an eigendynamic like that shown in fig. 6. This case will not be considered 
furthermore since the respective detection performance is always higher than that of the crucial case. 

The foregoing derivations have been made with respect to the first disturbance signal w, of a 
2nd-order system as used in equ. (4.1). Obviously, there is no problem to apply the principal results to 
the disturbance signal w„, too, or to further input signals when a system of higher order is given. 

4.3 The optimal observer 

The optimal observer provides the best performance, i.e. the smallest not detectable sensor failure 
under the worst conditions described in the previous section. Also the value of this ultimate performance 
achievable is of interest. Again, the problem will be solved based on a 2nd-order system first. Then, the 
results are generalized with respect to higher order systems. 

Let the example be given as represented in fig. 5, i.e.: 

- Second-order system 

- Failure in sensor 1: failure signal v, 

- Failure detection at observer difference n„ 



Given the constraint of equ. (4.9) the relationship between the sensor failure v, and the disturbances 
w, and viy  in Laplace-transformed representation becomes: 

det I   [(si - (A - K))]^ 

det < [(si - (A - K))]^ 

(4.10) 

Using an elementary determinant transformation equ. (4.10) becomes in detail: 

det <^n - hi' ;«ii 
(a^i - k^i) IwJ 

(4.11) 

det 

21 

hi' : 
'21' 

'11 

^21 

It should be noted that these dynamic relations between the sensor failure and the disturbances are 
not dependent on the second column K„ of the observer gain matrix K. In more general terms: The gain 
matrix column corresponding to that observer difference performing the failure detection does not affect 
the failure-disturbance relations. 

Developing the relation of equ. (4.11) into the transfer functions (v,/w,)(s) and (v-,/w^)(s) one 
obtains: 

v^(s) = [—^j (s) w^{s) + (s) W2(s) (4.12) 

The disturbances w, and w„ have to be considered as independent signals. Therefore, when minimizing v, 
the two portions in equ. (4.12) have always to be added. Fortunately, this condition is fulfilled by 
applying harmonic signals again. By that the transfer functions turn over to Bode amplitude plots which by 
definition represent positive values only. 

Now, the harmonic, stationary amplitudes of the sensor failure v, as response to the harmonic inputs 
w, and w~ have to be minimized by modifying the column K, of the observer gain matrix K. Using the 
abbreviations 

ij   iJ   TJ 

two limiting cases can be identified. 

(4.13) 

Case  f,, >> f„i ; 

The amplitudes v, due to the disturbance w, tend to zero, i.e.: 

V, 
1 nm 

hi ''   ^21 

'1 

w 
C^) = 0 

(4.14) 

However, at the same time the response due to the disturbance w„ tend to a limiting amplitude plot as 
shown in fig. 7a. This means that in practice for finite frequencies a limit is given by: 

1 im 

hi'' ^21 

(CO) 

'21 
(4.15) 

Case  ^21^^ hi- 
a 

This case is the reverse to the previous one. As shown in fig. 7.b the first sensor 
failure-disturbance relation (v,/w,) tends to the limiting amplitude plot of the transfer function 
^/{s-a,-,),  i.e.: '  ' 

^21 ''    hi 

(0)) 

1 

jij-a 11 (4.16) 
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whereas simultaneously the second relation tends to zero, i.e. 

V, 

lim 

^21 >^ ^11 

'1 

Wo 

{<^]  = 0 
(4.17) 

These results are summarized and schematized in table 2 

^11           ^21 
f     >>     f 
^21           Ml 

limf^^ 0 
1 

\ wW s - a^^ 

lim(^^ 
1 

0 
\  Wg/ ^21 

Table 2: Limits of the sensor failure-disturbance relations of a 2 nd-order system 

Table 2 demonstrates that, obviously, it is not possible to bring both the relations down to zero 
simultaneously. 

Two results should be emphasized: 

- The sensor failure-disturbance relations are independent of the column K^, that is the column 
corresponding to the observer difference which is supposed to yield the failure detection. 

- The result of the optimization process, i.e. the optimized sensor failure-disturbance relations, is 
entirely independent of the observer gain matrix but determined by the column A, of the plant matrix A 
only. This column A, corresponds to that sensor which is affected by the failure. 

4.4 Generalizations 

The results derived in the previous sections with respect to a 2nd-order system are now generalized 
without proof and applied to a system of higher order. 

Consider the following assumptions: 

- Plant system matrix: A .    i   ^ 

- System order: n 

- Failure in sensor i: v. 

- Failure detection at observer difference n. 

Then, the following limits of the sensor failure-disturbance relations are possible: 

W. 
V V ■■■ • V 

Mi ^2i s-a. 
V ■■ . .V (4.18) 

Given the amplitudes of the above disturbances the smallest value of the quotients offered in equ. 
(4.18) can be elected. This value represents the eventual failure detection performance achievable, i.e. 
the smallest amplitude of the failure signal v. just not detected. The frequency of this failure signal is 
identical to the frequency of that disturbance signal elected from equ. (4.18). 

In order to achieve this final result the observer gain matrix has to be chosen similarly to the cases 
discussed with respect to a 2nd-order system. Again, the column K. corresponding to the failure detecting 
observer difference n. is not available to this optimization procedure. 

However, this observer optimized with respect to a good failure detection performance is not 
necessarily supposed to be optimal from the conventional design point of view since its eigendynamic has 
not been a matter of consideration so far. But from a practical point of view the eigendynamic cannot be 
neglected. For instance, a poor stability though not affecting the stationary sensor failure-disturbance 
relations is of no use. Hence, at this point the column K. of the observer gain matrix K can be used 
finally in order to establish a good eigendynamic.       '' 
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5.  APPLICATION TO A COMPLETE FLIGHT CONTROL SYSTEM FOR A TRANSPORT AIRCRAFT 

The failure detection concept was applied to a given flight control system for a transport aircraft. 
The objective of this experiment was, first of all, to demonstrate the operational feasibility in a 
realistic environment. Hence, it was not necessary to lay emphasis on the observer design as the optimal 
one described in the previous chapter. 

5.1 The flight control system 

Fig. 8 shows a simplified block diagram of the flight control system assigned to the failure detection 
experiment. The objectives of this control system are on the one hand a good response to the command 
signals defined as the command vector. 

altitude command      H c 

speed command        V (5.1; 

bank angle command    ♦ ' c 

and on the other hand a sufficient suppression of the disturbances w. 

A good command response is achieved essentially by a careful design of the feedforward signal path, 
given a well damped eigen behavior of the closed loop system by choosing reasonable feedback gains. Then, 
this latter property provides also for a sufficiently low disturbance response. 

In order to achieve these design objectives it is necessary, first, to control the plant by the 
control vector u defined as ,. 

elevator deflection n 

thrust F 

aileron deflection \ 

rudder deflection 5 

(5.2) 

and, secondly, to get the information about the plant state via the measurement vector z, defined as 

yaw rate r 

roll rate P 

pitch rate q 

bank attitude <t> 

pitch attitude 0 

vertical speed H 

altitude H 

indicated air speed V 

lateral acceleration a 

IAS 

(5.3) 

This flight control system is successfully flight tested with the DFVLR experimental aircraft HFB 320. 
A detailed description is given in |7|. 

The feedforward control loops are independent of the measurement. Hence, they do not interfere with 
the sensor failure problem. On the other hand the signal path from the measurements via the feedback law 
to the control vector u is of particular interest for the sensor failure problem and its solution, since 
via this loop sensor failures have an effect on the plant. 

5.2 The test arrangement for the generation, the detection and the isolation of sensor failures -. 

The failure detection scheme needs a duplex configuration as represented in fig. 1. But in the 
experimental flight control system only a simplex sensor system was available. Therefore a slight 
modification of the original concept became necessary for test purposes. This is shown in fig. 9. 

A single sensor package was used for the flight control test program. All measurement signals combined 
into the measurement vector z are splitted up into two separate signal paths. Into either path additive 
signals can be fed represented by the vectors v, and v„. Thus failures in sensors of the original two 
sensor packages are simulated by software. The remainder of the original scheme was not changed. 

The intrinsic purpose of the experiment, i.e. the indication in which of the two sensor packages a 
failed sensor is located, can still be achieved. Only the indication of the type of the failed sensor 
operates in an unrealistic condition. But as already mentioned this indication implies no innovative 
aspects since it arises in the conventional hardware redundancy concepts, too. 
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Fig. 10 shows in detail the arrangement of the sensors and the internal structure of the observers as 
it was used in the flight tests. For clarification purposes observer 1 and the signal path of the 
simulated sensor package 1 is represented only. The representation of observer 2 and the SP2 is identical 
to that shown in fig. 10. 

The aircraft motion model used in the observers is nonlinear. This is done in order to keep the 
estimated outputs as close as possible to the outputs of the real plant. The nonlinearities consist of 

- the coupling between the longitudinal and the lateral motion 

- some quadratic terms depending on the dynamic pressure 

- the thrust depending on Mach number and static pressure. 

The differences between the measurement signals and the estimated outputs are fed back to the plant 
via the observer gain matrix. Going beyond this concept shown in fig. 1 and described in the original 
observer/filter literature additional integral terms are fed back, too. This is done in order to cancel 
possibly stationary deviations in the respective observer differences completely. The implementation of 
these integral elements into the observer structure does not raise any problems either theoretically or 
practically. The observer gain matrix itself is chosen as similar to the gains used in the control system. 
Though this approach is not stringently optimal as pointed out in chapter 4 it offers some practical 
advantages. Detailed reasons are given in |5|. 

In fig. 10 additional filters are attached to the observer differences n and ng . These filters 
operate in the way generally described in section 3.3 and sketched in fig. 4 and fig. 6, i.e. suppression 
of disturbances and amplification of sensor failures. The actual effect will be discussed using some 
flight test results. 

6.  FLIGHT TESTS 

Flight tests were conducted using the DFVLR test aircraft HFB 320. First, according to the outlined 
concept data about the model deviation and real disturbances effects were collected. In the second part 
the operation of the failure detection and isolation was demonstrated when sensor failure signals were 
applied. 

6.1 Determination of thresholds , . 

The observer differences deviate from zero due to model deviations and disturbances. The response to 
model deviations becomes high when the control system forces the plant to move dynamically. Therefore, 
inputs into all 3 command signal paths of fig. 8 are applied successively: 

- altitude command with different descent and climb rates 

- indicated air speed commands represented as a deceleration procedure 

- bank attitude commands. 

Some test results are shown in fig. 11 and fig. 12. They are selfexplanatory to a certain extent. Only 
a few features will be discussed. 

Fig. 11: The descent rate is 800 ft/min, the climb rate is 1500 ft/min. Though during the maneuver the 
plant moves considerably in altitude H, vertical speed fl and pitch attitude B the corresponding observer 
differences remain small. Only the signal ng shows a certain offset which becomes even clearer in the 
output Hgp of the attached low pass filter. This effect may be referred to an unprecise modelling of the 
actual thrust. 

Fig. 12: During this flight interval an area of heavy air turbulence was sought and found crossing a 
strong cumulus. 

Based on these data the thresholds for the second part of the flight test were fixed as shown in the 
first column of table 3. 

6.2 Application of sensor failures 

As represented in fig. 9 and fig. 10 sensor failures are generated by feeding additive signals into 
one of the two sensor signal paths. This is done successively for each of the sensors of one sensor 
package. Because the arrangement of the sensor packages is symmetrical with respect to both the control 
system and the observers, sensor failures are applied to the SPl only. The plots of the failure signals 
are equal but multiplied with an individual factor given in the second column of table 3. The common 
structure of the failure plots is defined in fig. 13. Since the signal character of the sensor failures is 
important with respect to their effect on the control system on the one hand and to the failure 
detectability on the other hand the plot of fig. 13 is partitioned into three different intervals. 
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Observer difference Sensor failure 
thresholds factors 

n^j  = 1.0 °/s k^  =  3 Vs 

Hp,  = 2.0 Vs kp  =  5 Vs 

n^j      = 1.0 Vs \      -      5 Vs 

\j      -    2.5 = k*  = 10 ° 

"GT  = 1-0 ° ke  =  3 ° 

nf^^  = 2.0 m/s k|^  =  5 m/s 

riyj  = 4.0 m kj,  = 50 m 

n^-j-  = 2.0 m/s k^  = 10 m/s 

"ayT = °-5 "i/s^ ^y =  5m/s^ 

nepT = °-5 ° - 

n^P^ = 0.25 Vs - 

Table 3: Thresholds and sensor failure factors 

Interval "10-60 sec": During this period the failure signal increases on a slight slope, thus simulating a 
small drift of the physical sensor. 

Interval "60-70 sec": A stationary offset is represented. 

Interval "70-80 sec": A steep decrease to zero is simulating a high drift rate. Thus a failure signal 
containing higher frequencies is represented. 

The sensor failures were applied during a straight level flight in fairly calm air. Thus the effect of 
the failures becomesclear because they are only little disturbed by air turbulence or command signals. In 
fig. 14, fig. 15 and fig. 16 test results are shown respective to failures in the e-sensor, the 
Vj^j-sensor and the p-sensor. In these figures the plots of the most relevant variables are given showing 
in the first columns the system responding to the complete failure signal profile without to be interfered 
by sensor switching. In the respective second columns the operation of the switching logic becomes 
obvious. 

Fig. 14: The additive failure signal in the s-sensor clearly shows up in the observer difference no and 
similarly in the filter output "g P- ^^^ aircraft motion itself is almost unaffected by this kind of 
failure, even during the interval of steep decrease. The failed sensor is detected when the filter output 
ngp increases beyond its threshold. At this time the switch command signal appears. At the corresponding 
time instant of fig. 14b the switching operations take place actually. 

Fig. 15: The application of the failure to the V^^^-sensor shows results which are very much different 
measurement in 
difference n 

tection of s 
ring the steep 
on the coupling 
for the failure 
threshold n 

from those of the previous failure case. Here, the plant variable Vj.„ follows the faulty 
the Vj.g-sensor whereas during the low rate drift interval the corresponding observer 
remains close to zero. This means that the observer difference n is unusable for the de- 
drift rate failures. It indicates only higher drift rate fail^ures as demonstrated du 
decrease interval. But low drift rates have an effect on the observer difference ns based 
between speed and pitch attitude within the plant and its model. This relation can be used 
indication particularly by the filter output n^p since the previously defined disturbance 
is small due to the low pass filtering property. Hence, this filter output activates 
operations in fig. 15b. 

V ow 

*FT the switching 

Fig. 15: These plots show an example of a failure in a lateral motion sensor. From a systems theory point 
of view this failure case appears to be similar to that of a failure in the s-sensor in fig. 14. 

Failures of the remaining sensors can be classified either as similar to the failure of the 0-sensor 
(r-, 6-, H-, a -sensor) or as similar to the failure of the Vj.^-sensor (t-, H-sensor). As far as the low 
drift in the <*-sensor is concerned, the relation between bank attitude* and yaw rate r is utilized 
amplified in the filter output n p. However, for the H-sensor an equivalent relation does not exist. 
Hence, drift failures in this sensor must be declared as undetectable. 

7.  CONCLUSION ■        -•  '. 

For the sensor part of a flight control system a failure detection concept has been developed. Based 
on analytic redundancy a duplex sensor configuration achieves the fai1-operational capability of a 
conventional triplex system. Two parallel deterministic observers provide the information about which of 
the two corresponding sensors is faulty. 

Since sensor failures severely influence the safety of flight the failure detection becomes crucial, 
too. Hence, the performance of the failure detection has been determined with respect to the worst-case 
failure cases. By using optimal control methods it has been derived that the worst-case failure signals 
are precisely definable as deterministic, discontinuous and aperiodic signals. However, assuming harmonic 
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failure signals as approximations to those of the exact worst-case the optimization of the observer 
subject to the failure detection task becomes feasible. Given this optimal observer, the final failure 
detection performance achievable turns out to be eventually determined by the properties of the 
uncontrolled plant only. 

Flight tests have demonstrated that in principle the failure detection concept is feasible with 
commonly used sensors. 
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Fig.  3:  Optimal  time histories with limited input signal  n. 
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Fig.  6:  Bode amplitude plots of the observer eigendynamic 
and of a bandpassfilter 
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Fig. 13: Common sensor failure profile 
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ABSTRACT 

As for the whole of the Automatic Flight Control Systein, 
the automatic pilot for the AIRBUS is a computer system 
with high criticality. In order to assess the quality of the 
software, a number of observations and measurements 
have been performed during the development cycle. This 
paper presents a general method of evaluation, the data 
collected, and some evaluation results. 

The aims of this analysis are to assess the impact of 
development constraints on the quality of the product and 
to evaluate its operational reliability. The results show 
the conditions in which software may be adversely 
affected by modifications. In particular, they make it 
possible to appreciate the quality of the design, the 
effectiveness of the verification and validation processes, 
and the flexibility of the software. The last part gives a 
tentative example of operational reliability evaluation, 
taking into consideration the complexity of the functions 
and the mission profile. 

Following a presentation of the project in paragraph 1, 
the aims of the analysis are developed in paragraph 2. 
These aims concern the impact of development constraints 
and the evaluation of operational reliability. The 
evaluation method is then described in paragraph 3 ; it 
consists of three stages : Observation and Measurement, 
Statistical Analysis and Modelling. 

The Observations and Measurements are presented in 
paragraph <» where a distinction is made between the data 
characterizing the product, the development process and 
the utilization profile. 

Some example of evaluations are given in paragraph 5 in 
order to illustrate how it is possible to fulfill the 
objectives set in paragraph 2. 

1 - CONTEXT OF THE ANALYSIS 

1.1.   -        AIRBUS       A3I0        AUTOMATIC 
CONTROL SYSTEM 

FLIGHT 

INTRODUCTION 

The Automatic Flight Control System for the AIRBUS 
A310 is a computer system with high criticality. 

The constraints of Safety and Availability have made it 
necessary to use fault-tolerant techniques. 

As a majority of the functions are performed by software, 
the developments and modifications are controlled by a 
production environment. 

One important development constraints is the rapid and 
continuous change in specifications to which, owing to its 
very nature, the software is subject. In order to 
objectively appreciate the performance of the production 
facilities, the impact of the modification constraints and 
the quality of the software resulting an Observation and 
Measurement procedure was organized. This paper 
presents the assessments resulting from a first 
exploitation of these data. The aim of this preliminary 
analysis was to show that a judicious collection of data, 
complemented by an efficient evaluation method, can 
produce significant information which makes it possible to 
assess the phenomena affecting the quality of the 
product, such as regression in the course of modifications, 
the effectiveness of the verification and validation tests, 
etc ... 

The System under review is an on-board, hardware and 
software system which contains six different types of 
computers and performs all the Automatic Flight Control 
System (AFCS) functions. 

'^ 

Figure I 



Distribution of Main Functions : 

- FLIGHT CONTROL COMPUTER (FCC) 
automatic    pilot    and    flight    director    with 
autoland function. 

- FLIGHT AUGMENTATION COMPUTER (FAC) 
. pitch trim, 

yaw damping, 
• flight envelope protection. 

- THRUST CONTROL COMPUTER (TCC) 
control of speed and maximum engine setting, 
maximum engine setting computation. 

These   three   computers   have  a   built-in   test   and   fault 
isolation system. 

Fault-tolerant Architecture 

The design of  the systein  is governed by two important 
requirements : Safety and Availability. 

These  requirements  make  it  necessary to have a fault- 
tolerant architecture consisting of 

two independent computing channels based on 
asynchronous processors : for the critical functions, 
each of the computing channels receives its own 
information from outside the computer ; 

hardware voters associated with comparators which 
detect any discrepancies between the computing 
channels. 

On a global level, survival after a first failure is provided 
by a second computer identical to the first. 

1.2. - SOFTWARE LIFE-CYCLE 

The majority of the system functions are performed by 
software. In total, the programs represent 230 Kbytes 
written 60 % in high-level language (PLM 86) and itO % in 
assembler language for the 8085 / 8086 microprocessors. 
The software development process is divided into eight 
phases : external specifications, preliminary design, 
detailed design, production, individual tests, integration 
tests, software verification, validation-. 

For each phase, there is a verification of the products 
resulting from it. The development of the first software 
version was accomplished in 10 months (from October 80 
to September 81) by a team of 'tO engineers and 
programming analysts. This phase was followed by an 
intensive modification cycle lasting IS months. 
Commercial exploitation started in March 1983 with the 
airlines LUFTHANSA, SWISSAIR and KLM. At the present 
time, the system has accumulated a total of 6000 flight 
hours. 
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Development Constraints 

Not all the data required to establish the final 
specifications are available right at the start of an 
avionics software project (aircraft modelling for 
example). Consequently, the rapid and continous change 
of operational specifications represents an important 
feature of SFENA softwares. It involves a succession of 
modification sequences motivated both by specification 
changes called Development Change Requests (DCR) and 
by the correction of errors found during validation. 

The following diagram represents the production of 
successive software versions. A distinction can be seen 
between the versions produced during integration, which 
are shown as I,-,, and the versions produced as a result of 
modifications, which are show, as Vp ; n represents the 
number of the version. 

sequences the following operations : 

. call-up of basic processors (MODIFY, 
compilers, link editors, memory image 
constructors) ; 

. generation, for each operation, of an "error 
log" file ; 

. production on the console of an echo of the 
operations performed ; 

. computing and checking of the file signatures 
obtained at all levels ; 

.   update of the software nomenclature. 

XTRSION  I^ VERSION V 

SFE.NA Aerospacial 
Validation 

o 
Int^gracion of 
nev    Funccions 

SFENA 
Validation 

Modification 
and possible 
Integration 

JVer 

■o 
VSRSION W_ 

Figure 111 

while its aim is to improve the operational performance 
and quality of the software, special attention must be 
paid to the modification process as it may have the 
opposite effect to that desired. In particular, it may lead 
to a premature regression of software performances if the 
design principles and development facilities are not 
suitable for it. 

Software Production Environment 

The software production environment set up to meet the 
requirements mentioned above consists of processors 
developed by SFENA on INTEL systems. Without going 
into a detailed description, two of these processors have a 
particularly important role : 

-     the modification processor : MODIFY 

Program modifications are implemented from the 
source texts of the modules in the current version. In 
order to avoid direct handling of the source texts, 
modification items are constructed containing : the 
reasons for modifications, a limited number of 
instructions (add, delete, replace) applicable to the 
numbered source lines, and descriptive commentaries. 
The modification item represents the difference 
between two successible versions of an element. The 
new source text is generated by MODIFY. 

The software production processor : MODGEN 

This processor makes it possible to sequence all the 
operations required to obtain an executable code. 
During the integration of a software or the production 
of a new version, it automatically 

2 - AIMS OF THE ANALYSIS 

This analysis is aimed at two different objectives : 

2.1.    -     ASSESSING    THE    IMPACT    OF    PRODUCTION 
CONSTRAINTS ON PRODUCT QUALITY " 

As in any industrial field, custojner/supplier relations are 
subject to the constraints of lead-times, incorporation of 
modifications, etc. It is of course impossible to assess the 
impact of these constraints in an absolute sense, as this 
would assume that we would be able to cancel them out in 
order to have a reference ; on the contrary, the declared 
aim of these assessments is to achieve higher 
performance in proportion to their intensity. In 
consequence, it is assumed that these assessments will 
make it possible to appreciate the degree to which the 
SFENA production facilities are suited to these 
constraints, thereby revealing the critical points in the 
development cycle. 

2.2. FORECASTING OPERATIONAL RELIABILITY 

The static characteristics of softwares (complexity) and 
their behavior as observed during tests provide input data 
for the models which make it possible to evaluate and 
forecast the operational reliability. (MUS, 80), (LIT, 81), 
(CHE, 80). These models introduce objective elements for 
deciding to stop a test, defining a test policy, providing 
the resources required to achieve a reliability objective, 
etc ... 

Because it is implemented in the industrial field, this 
analysis has the advantage that it permits a concrete 
evaluation of the applicability of such models. 

3 - METHOD 

Given the declared aims of the analysis, the problem to be 
solved is to establish : 

the     variables     which     give     information     on     the 
phenomena to be studied ; 

the laws governing the development of these variables. 



8-4 

The solution to this problem is of the type which must be 
based on a procedure containing the following main 
stages : Observation, Statistical Analysis and Modelling. 

Observation makes it possible to acquire the necessary 
data specific to the analysis. 

The Statistical Analysis is on two levels : 

the descriptive analysis which reveals the 
observable phenomena and makes it possible to 
determine the variables which give information ; 

the exploratory analysis which compares 
different phenomena in order to suggest and 
establish the relationship between cause and 
effect. 

The Modelling establishes the laws, either empirical or 
theoretical depending on the outcome of the 
exploratory analysis, which govern the development of 
the variables (or phenomena) and provide the means of 
appreciating the quality of the models produced. 

The main advantage of developing this method, which is 
described in detail in (ROM, 82), lies in the fact that each 
of the three stages corresponds to a type of decision that 
can be taken in the light of the results obtained : 

- At the end of the first stage, we are in possession of 
the data believed to be necessary for the analysis, but 
we know nothing about the content of the data 
collected ; the decisions taken are of a subjective 
nature. 

After the analysis stage, the phenomenology of the 
failures is percieved and understood ; the results 
obtained make it possible to take objective decisions. 

The third stage makes it possible to predict future 
behavior and take objective decisions while 
appreciating the risk involved. 

It is important to emphasize the fundamental role played 
by Observation in order to obtain satisfactory results at 
the end of the Modelling. The two characteristics which 
affect the quality of the measurements are : 

the definition of the observations, 

the dependability of the data collection process. 

Paragraph 't describes how the second characteristic has 
been satisfied. The first can only be approached in a 
system situation where, starting off with correct 
measurements, the method described previously is applied 
in order to bring out the first interesting phenomena and 
to define the measurements, before performing new 
observations which allow progress to be made in the 
understanding of the phenomena. 

tt - OBSERVATIONS AND MEASUREMENTS 

The results given in this paragraph concern the FCC 
software which performs the automatic pilot functions 
(cf. Figure I). This software consists of 56,000 instructions 
in source language, taking up 120 Kbytes of program and 
executed on four microprocessors. 

The Observations and Measurements successively concern 
the product, the development process and the utilization. 

li.l.    -     PRODUCT MEASUREMENTS 

The characteristics of the product have been analyzed on 
two levels : tiie interconnection structure for the various 
functions and the complexity of each function. 

iiA.{. - Interconnection Structure 

Figure IV shows the sequencing operations that are 
possible in a cycle of 150 ms for the functions providing 
the main cruise and landing modes of the automatic pilot : 

1 
2 
3 

k 
19 
5 
6 
7 
8 
9 
12 
13 
m 
15 
16 
17 
18 

Initialization on power-up 
Real-time monitor 
Decoding       of       discrete       data      (pilot       + 
environment) 
Mode engagement 
Mode disengagement 
Go-around 
Acquisition of selected heading 
Yaw loop 
Feedback 
End 
Vertical speed or altitude hold 
Altitude Acquisition 
Glideslope beam capture and tracking 
Level capture and selected speed 
VOR navigation or tracking 
Localizer beam capture and tracking 
Heading hold 

Figure IV 
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The results obtained are given on the following table : 

MZASL-R£MEyT ME.\.NLSC 
ACCEPTABLE       ' 

RA-NCE            ; 
CAta^ATED    ; 

VALUE            ; 

 : 
1.14              ' Hierarchical Mean nunber  o£  owdulei 

: 
cocpl.xity CH p<c  level 

Structural Deoaity ot  liaka betweea ]o. 0     ; complitxity CS noduLe* 

Acctifibility Diveciicy  of  accaii  to [o.oi. I]    ; 0.125            ■ 
of  aodulei A BKidulsa 

Tcicabilicy or 
pacha TC 

Effort required to run 
through a pacti on the 
graph  during  Che  test 

[0.002,  0.25]   ! 

Tascabilicy Effort  required  to  teat ['0-'. .]   ; 3.10-^ 
of  syitH T5 the  lyitea 

Entropy E 
Disorder in incet-nodute 
rclatiooi 

[0. so]      ; 
■ 

MODLLES        : DC/O.S EM/ib                :;E/:;t E^K P C 

; 
0.9S 0.37 2.3 0.1 0.39 

1 0.4i 0.35 0. 0.31 
O.Ji 0.51 2.2 0.42 0.1.6 
i.o: 9.56 1 

0.8 I 1.5 0.21 0.675 
0.17 1 0.19 0.18 

j u.ei 0.85 t.u 0.1b 0.673 
0.GI5 O.i 2.83 0.5 o.es 
0.8 0.33 0.ii7 0.185 0. 195 
0.952 0.53 3.33 0.31 0.77 

15 0.77 0.27 2.5 0.28 0.45 
0.78 0.4 : 0.31 0.44 
0.87S 0.34 2 O.Jl 
0.91 0.3B 2.J3 0.378 
I.01 i.a 3.92 1 

Table II 

Table 1 

Table I gives the results of the complexity measurements 
of this graph according to the measures developed by 
Mohanti (MOH, 79). 

By analysing this table, it is possible to distinguish 

the highly satisfactory results : the levels are simple 
(CH), the functions are readily accessible (A), the 
paths are easy to test (TC) and the system is well 
organized (E) ; these results indicate that the software 
design has been well done ; 

- the less favorable results concerning the difficulty in 
testing the system (TS) and the appreciable coinplexity 
of the relationships between functions (CS), which 
indicate that the application is, by its very nature, 
difficult. 

tt.1.7.-    Complexity of Functions 

The functions involved are characterized by numerous 
internal logic conditions and a high global flow of data. As 
a result, the complexity of each function has been 
established by taking into consideration 

- the complexity of the checking structure measured by 
the Entropy (EM) and the Checking Density (DC) ; 

- the complexity of the data flow measured by the 
number of global inputs (NE) weighted by the 
percentage of instructions for accessing the global 
variables (P) ; 

according to the formula : 

0.5 X  U 
EM DC 

EM,.    .^ DC 
-)   +   ( 

NE 

limite 
.NE 

X P) 

U.2.    -    OBSERVING THE DEVELOPMENT PROCESS 

The development has only been observed from the 
Integration. In order to be effective, the collection of 
data must be uniform for all items of equipment, whithout 
loss of information and with no subjectivity. In order to 
meet these objectives, procedures were set up during the 
development of the project. Today, they are automated to 
a great extent. 

Data "sensors" are placed both in the Validation process 
and in the Modification process (cf. Figure III). These 
observations must be organized in such a way as to 
respect normal working practices and to integrate 
themselves into the existing structures. 

Whenever a deficiency is discovered in the course of a 
Validation, a sheet provided for the purpose is filled in 
immediately. Initially, this sheet gives the identification 
of the product and its version, together with a description 
of the deficiency. This sheet is numbered and distributed 
to the team in question. After investigation, the Software 
Manager completes the sheet by describing : 

the fault in the program, 

the correction made, 

the class of the anomaly. 

The sheets are filed at project level for each subsystem. 
The anomalies are then taken into consideration in the 
Modification process, with no possibility of losing or 
omitting information. 

By using the "reasons for modification" directives of the 
MODIFY processor, the references of the anomalies and 
their encoded classes are acquired at the level of the 
creation of the change items for the modules in question. 
Having been filled in, the change Items are submitted to 
the MODGEN production processor. 

Then, a first tool is used to collect and sort all the 
reasons for modification and to point out any syntax 
errors that may have crept in during acquisition. After 
correction, the production stages continue until the 
executable code is produced. 



Table III shows : 

- for each software version : the number of errors 
detected in the Verification / Validation process (cf. 
Figure 111) together with their classification according 
to the phase of origin and the type of error. 

The classes or errors are defined as follows : 

A :     design   (program   architecture,   breakdown   into 
modules) . 

li :     arithmetic   and   logic   (false   control   law,   false 
logic equation, incorrect conversion, etc ...). 

C :     control   logic   (loop   error,   branch   error,   false 
initialization, etc ...). 

F :     interface (incorrect encoding / decoding of input 
/ outputs, etc ... 

Z :     persistent (error surviving after corrections). 

to characterize the Verification / Validation process : 
the number of test hours and the consequent effort 
calculated on the basis of a new input applied to the 
software every 150 ms. 

In commercial service, the SFENA customer support 
department has access to the same type of anomaly 
sheets, enabling the deficiencies in the systems to be 
collected together. Their origins (hardware, software, 
environment) are determined in laboratory investigations. 
The processing of these sheets is the same as for the 
sheets obtained by the validation process. 

The GENSTA processor installed recently uses the 
activity reports from MODGEN. GENSTA collects the 
data specific to the modification of each module. The 
amount of data collected is aimed at correlating the 
parameters affecting the quality of a software and at 
forescasting its behavior on the basis of its past history. 
This processor is activated by iV10l3GEN in an entirely 
user-transparent manner. GENSTA gathers and classifies 
the following data : 

for each module : 

.   the number of modified source lines ; 

.   the number of tests performed over the whole 
production cycle ; 

.   the working time of the MODIFY modification 
processor. 

:                     :                      : 
:   VERSIOB    :      TEST      !      TEST 
:   NUMBER       :      HOURS        :     EFFORT 
I                     :                     : 

NUMBER    ■          PHASE OF ORI<:iM_                   :                     TYPE                          :         _      -.^.^of 

ESJIORS      ]  AIIAI.YSIS ',     CODINO    |  ^"QJ"   !  *   1   '   !   "=   j   ' 
■                  •      „,™;„     •   MODULES     ' 

Z   j OTHER    1      «Vmm     iMJDiriED     ' 

:         10        1        48         :   I.ISxIo' 
1                   I                   I                   I       I       :       : 

II        :        4        :        7        :        0        :0:4:0:0 3 :     3     i         -       !         -       i 
:         II         1         96         :  2.30x10^ 31        :        3        :      27        :        1        : 0  i 7 : 4  :13 0:5:           -         :           -         : 

II        :        96         :  2.30xlo' 18         I         3         I       14         :         1   •    1   1   :  8  :   1   :  4 1.3:           -         :           -         : 

13        1        96         :  2.30x10^ 17         :         3         :       12         :        0         : 0  :ll   :  2   :  3 1:0:           -        :          -         : 

:         14        :        96         1  2.30x10 23         :       10         :       13         i        0         : 3   ]12   : 0  :  6 1:1:          -         :           -        : 

VI         :      200        :    4.8x10 
i                   t                   I                   :       :       ;       : 

30         :       20         ;       13         :       13         t 9   :  6   i  4   :  9 16   i       6       !         13         i         36         i 

:        V2        :      320        i  7.68x10 73         :      46         1         7         :      20         i 3  Il9   :  4   :  8 21   :     16       :         13         :         47         : 

:        V3        :      190        : 4.56xIo' 37         :         7         :       23         I         7         11:3:9:9 2   :     13       :         12         :         24         : 

:        V4        :       ISO        1    3.6x10* 30        1      12        1      18        :        0        : t   :I1   : 3   : 4 5:6:         16         :        46         : 

:        VS        :      220        :  3.28x10 47         :      20         :        9         :    * 18         i 3   :  3  :12   :   7 7   :      13       :          19          :          72         : 

:        V6        :        80        :  1.92x10*' 13        :        8        :        3        :        2        : 0 : 3  : 3  :   1 0:4:           9         :         30         : 

:    TOIAUX    :     1592         :  38,2x10* 
:                     :                      : 

:                  :                  :                  ;      :       :      : 
330         :     138         i     148         :      64         :19  :49   :35   :3a 

:                    :                    ;                    :       :       ;       ; 
31   i    38       i         82         i       233         i 

:                :                      : 

Table III 

The software for an item of equipment generally uses 
several softwares which are produced separately and 
executed on different processors. From the files produced 
in the course of MODGEN, the tool "ATTAC8" collects 
and classifies all the modifications made on the various 
softwares related to one item of equipment, giving for 
each reason for modification the list of the elements 
affected in each software. This list is a component of the 
documentation associated with the equipment. It also 
makes it possible to give a complete breakdown of all the 
changes undergone by the softwares during their life 
cycle. 



for each equipment processor : 

.   the total duration of MODIFY ; 

.   the   total   worl<ing   time  on  the  development 
system ; 

. the ainount of work submitted ; 

. the number of modules modified ; 

. the total number of new source lines ; 

. the average modification rate ; 

. the average size of a modification. 

As an example, Table IV gives a synthesis of these data 
for the last four versions. 

5 - EVALUATIONS 

OBJECTIVE 1 - Impact of Development Constraints 

The data given in tables III and IV   make  it possible to 
perform the following analyses : 

5.1. DESCRIPTIVE ANALYSIS 

With reference to table III, this paragraph presents the 
characteristics and performances of the Verification 
/Validation and Integration / Modification processes. 

VtKSION 
MOUULKS NtU 

MOUULKS 
DlKKCTIVtS 

uai 
LINtS 

AVKKACE 
DIKECTIVt 

LtHCTti 

HOUIKY 
USE 
TIME 

JO US 
i'KHFOKMliU 

SYSTtM 

TlMt 

LiNtS 
HOUlKltU 

NUMBKK 

TtSTS 

NllHBt:K  Of   : 
IMl'KllVt-      : 
MKfflS             : 

Vo3 

:       VoA 

:       Vo6 

: 

74 

102 

103 

70 

10 

16 

1 

i 

1195 

1363 

1365 

1156 

3119 

AA46 

4386 

3168 

3 

3 

3 

3 

14^1 

10''59 

19''20 

6N7 

795 

1091 

404 

48''56 

3l''36 

5l''07 

24''05 

27441 

32177 

294 58 

23261 

412 

358 

570 

174 

: 
a         : 

: 

Table IV 

k3. OBSERVING THE UTILISATION 

The FCC software has accumulated more than 6000 flight 
hours. Of the observed anomalies that have given rise to 
report sheets, none could be ascribed to the software. 

Recent studies have shown the impact of the software 
utilization range on operational reliability (lEY, 82), 
(ROM, 82), (BUT, 80), (ROS, 82). Account with this result 
the frequency with which each of the FCC functions is 
activated has been measured on different routes. Table V 
shows these frequencies for two routes : TOULOUSE - 
LONDON and LONDON - AMSTERDAM. 

L0ND0.1      -     : 
LONDON A.^STERDA.M     :      . 

1   -  2 , 1           : 
2  -  3 (D-O/n (n-l)/n       ; 

2-9. 1/n I/n          ! 
3-4 1 1           : 
4-19 1 1           : 

19  -   16 0.8 0           : 
19 -  17 O.li 0.25       : 
19  -  6 O.OI 0.69       : 
19 - la 0.04 0.04       : 
16  -   18 0.05 0           : 
15-6 0.C3 0           : 

.     16-12 0.51 0 
I     16-13 0.36 0           : 
:     16-17 0 0 
:     17-6 0.16 0.45 
:     17  -   IB 0 0 
:     17-13 0.83 0.54 
!     17-12 0 0 

6-12 O.K 0.53 

TRA.VSITI0.1 
TOULOUSE - 

LavDON 
LONDOS    -     i 
A.XSTERDAM     :   

6-13 0.B5 0.46          : 
:     18-12 0.5 0.66          1 

18-13 0.5 0.33          : 
!     12-14 0 0             : 
:     12-13 1 1             : 
:     12-8 0 0 
:     13 - li 0.14 0.13         ! 
:     13-13 0.27 0.3:          : 
:     13-5 0.15 0.04          : 

:     13 - a 0.43 0.48 
:     14 - S 0.16 1               1 
:     14-8 0.83 0             : 

15-14 0 0.26        : 
15-5 0 0             : 

:     15-8 1 0.73 
:       5-7 ) 1 

5-8 0 0 
7-8 1 1 

;       8-2 ' 1 

5.1.1.-    Verification / Validation 

Characteristics 

300 

200 

100 - 

VERSIONS 

[> INTEGRATION 

[> VALIDATION 

Figure V 

Table V 



The following features may be noted 

the start of the closed-loop validation tooks place as 
from 13 ; 

the integration of a new landing function after V2 ; 

the increase in the number of validation hours as soon 
as the airframe manufacturer enters into the 
validation process. 

Performances 

Distribution  of  detected  error rates according to their 
phase of origin. 

Distribution  of  detected  error rates  accroding  to  their 
type 

ENCODING 

MODIFICATION 

^ INTEGflATKDN 

[> VALIDATION 

Figure VI 

This serie   ol curves demonstrates 

- the predominant detection of errors committed during 
coding, in the integration test ; 

the efficiency of the closed-loop validation process for 
finding the errors resulting from the analysis phase ; 

the non-negligible extent of the errors committed in 
the course of modifications. 

The  observations  confirm   the known  results (ALB,  82), 
(LIP, 79), (MOT, 77), particularly concerning : 

- the errors resulting from the design, which are 
revealed more effectively by a functional test than by 
a structural test ; 

- the errors resulting from the coding, which are the 
most frequent and the easiest to detect. 

3*C :   compucing 
and   logic 

Interface 
j;    Design 

PersisCenc 
VERSION 
NUMBER 

[> INTcGSATICN 

D      0 VALICA7I0N 

Figure VII 

These curves show some significant phenomena which 
confirm and complete the previous observations 

the interface errors (F) are revealed during the 
integration tests, which is normal because it is during 
these tests that the computer interface is considered 
for the first time ; 

the computing and logic errors (B and C) are the most 
frequent and are best detected during the verification 
tests ; 

the design errors (A) are best detected by the closed- 
loop tests. 

The "persistent" feature (Z) seems to be strongly affected 
by the nature of the test : it appears in fact that the 
closed-loop test detects errors which are more difficult to 
isolate (linked to the design). 

These analyses make it possible to draw the following 
initial conclusions 

the integration phase has achieved its objectives : the 
interface errors and design errors have been revealed 
to a high degree ; 

the closed-loop test is effective : the analysis and 
design errors are preponderant here, which was not the 
case with the integration. 



8-9 

5.1.2.-     Integration / Modification 

Characteristics 

The workload to be taken into consideration for each 
change, represented by the number of errors and the 
number of OCR's (development change requests), is 
distributed as follows : 

NUMBER  Or 
ERRORS 

70 - A 
60 - /\ 
SO ■ /    \ A 
to • /      \ /V   auDbtr of tcrors  co b« 

30 ■ A / 
\ 
^ \ 

corrtcc«d 

20- /   ^ ̂  y 
s^-   nuabtr of DCR to b* taken 

inco  account 10 - 
f / 

f 
11    12    13 v. VI V2   V3   Vi V5   V6 

0    INTEGRATION : 1 

— 
1 

C   l[>    VALIDATION 

In order to limit the effects of the OCR's, which are 
usually modifications of the gains in the servo-systems, 
i.e. constants, the design of the programs has been carried 
out by separating the data from the executable code. It 
seems that this principle is insufficient, as it can clearly 
be seen that the majority of OCR's affect 3 to 10 
modules. 

Figure X shows the number of modules modified at each 
change of version. 

NUMBER OF MODULES 
MOD IF1 ED 

~l   I   I   'I   i   1   i   I   I   V 
10   II    12   13   U   VI   V2   V3  V4   V5   V6 

Figure VIII 

Performances 
Figure X 

The measurements performed by ATTAC8 make it 
possible, in particular, to establish the following 
histogram which provide information on the flexibility of 
the software. 

% DCR 

5.2. EXPLORATORY ANALYSIS 

50 

to 

30 

20 

10 

0 
I 2 

%DCR 

3_^ 
15 20 
NUMBER OF EXECUTABLE 
MODULES MODIFIED 

NUMBER OF MODULES 
(EXECUTABLE + DATA SEGMENTS) 
MODIFIED 

Figure IX 

Specification changes (OCR's) represent an important 
control production constraint, and it is advisable to 
control their effects. As an illustration, a parallel has 
been made between the observed error rates, the number 
of OCR's and the number of modules modified. 

A first examination (cf. Figure XI) shows an inverse trend 
between : 

- the   number   of   OCR's   and   the   number   of   modified 
modules, which increase ; 

- the rate of observed errors, which decreases. 

Figure XI 
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'' DCR SOD. DC}1. ' ^"i-1 >nD. -  WlD.j h'h; l.c> 

1. 1.00 

OCR o.n I.OO 

-03 0.30 o.s; 1.00 -. 0,30 O.s; 1.00 

SCR, - ^^i-l 0,!S C.JO o.:i 1.00 

SCO. - ^'i-. S.aJ O.Ii o.b: o.?o 1.00 

1 1 \ _, 0.7ft O.Si O.ft] 0.90 0.97 1.00 

! Den 
1 

-C.SO O.C) o.:i -0.61 -O.W -0.11 1.00 

Xj    represents    the    detected    error    rate    during    the 
validation of version i. 

DCRj represents the number of OCR's applied to version 

MODj represents the number of module in version i that 
have been modified. 

It can be seen in particular that : 

there is a highly negative correlation between Xj 
and ? DCR, which expresses the trend inversion 
observed ; 

there are strong correlations between Xj /x i-1 and 
DCRj - DCRi.i or MODi - MODj.!. 

5.3. MODELLING 

A multilinear regression makes it possible to express the 
cause-effect relationship between the numbers of OCR's 
and modified modules for two successive versions and the 
increase in the error rate. 

The model obtained is as follows : 

-  0.5508 X   lo"    X   (HOD.   - MOD._|)   .  lo"' x   (DCR.   - DCR._,)   » 0.9289 

It is interesting to exploit this model in order to study the 
conditions in which OCR's have a negative impact on the 
state of the version produced, i.e. in what conditions the 
software regresses. This is achieved by performing the 
equation : 

MODj - MODi.i = a (DCRj - OCRi.i) 

and studying the change in x i / A i-1 foi" various 
assumptions for a . 

■i ' V, 

^ 

^ ̂  

^ 
-::^ 

f.00,    -  MOO   ^ 

' ' ' ' 1 ■    I    1    1 .         1        i        .        1 

Figure XII 

It can be seen that 

the state of the new version is not as good as the state 
of the previous version : 

for two modifications if they each affect ten or 
so modules, 

for  twelve  or  so  OCR's if only one module on 
average is modified per DCR. 

This illustration demonstrates that the future state of the 
software depends to a great extent on concerted action : 
the intensity of the modifications and the flexibility of 
the software. 

As the average number of OCR's is 13.6 per version, and 
the average number of modified modules is 3, it can be 
deduced from this that flexibility is a basic quality 
criterion for this type of software. In order to improve it, 
it appears necessary to anticipate the type of 
specification changes as early as the design stage. 

OBJECTIVE 2 - Operational Reliability Forecast 

This analysis is based on ^, 

the data provided in paragraphs 't.2 and ^(.3 concerning 
the software characteristics and the utilization ; 

- the results published in the literature on the 
relationship between the operational reliability of a 
program and the following characteristics : 

.     code complexity (CHE, 80), (ALB, 82) ; 

.     utilization   (CHE,   80),   (lYE,   82),   (ROM,   82), 
(NOU, 82), (R05, 82). 

The presentation is limited to the resulting model. 
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In accordance with the schematic representation given on 
Figure IV, the software under study is seen as a network 
of independent functions that are created and tested 
separately. 

The presentation is limited to the resulting model. 

In accordance with the schematic representation given on 
Figure IV, the software under study is seen as a network 
of independent functions that are created and tested 
separately. 

The reliability of a function is defined as the probability 
that it will correctly perform the service expected of it, 
i.e. producing the correct outputs and correctly 
transferring the control to the next function. 

When the software is activated, a sequence of functions is 
executed. The result depends on this sequence and on the 
reliability of each function. 

Assumption   1 
independent. 

the   reliabilities   of   the   functions   are 

The reliability of a function is modelled by a law which 
takes into account its complexity Cj, in accordance with 
the definition given in paragraphs 't.1.2. and the debugging 
word  npi  that  has  been  applied  to   it  according   to  the 
formula 

R. 
(1-C.)   (N   .   +  1) 

1 _£1 

A transition to C has been added at the terminal function 
n with the probability R,-, to represent the correct 
execution fo the output function. 

The probability of transition PJ; between two functions i 
and j is weighted by R; to represent the faultless 
execution of function i. 

In consequence, the reliability of the software is the 
probability of reaching state C from the initial state. 

Figure XIII represents the Markov chain modelling the 
FCC software under study. 

1       (1-C.)   N   .   +  1 
1      pi 

Assumption 2 : the transfer of control between functions 
takes place according to a Markovian process. 

The transition to a state on the graph is a probability 
which depends only on the present state. It is considered 
that the probabilities of transition are constants which 
entirely characterize a given utilization profile. As an 
example, the transition frequencies given in table V 
characterize two distinct utilizations of the same 
software. 

Reliability Model 

The network of functions is represented by an oriented 
graph, each node of which is a function and each arc a 
possible transition. Each node is associated with a 
reliability Rj, and each arc with a probability PM which 
expresses the probability of a transfer of control between 
i and j. 

Two absorbent states C and F have been added to 
represent the correct termination and the failure 
respectively. 

A transition to F has been added to each node i with the 
probability 1 - R, to represent the occurrence of a fault 
during the execution of i. 

Figure XIII 

The expression of the reliability is obtained from the 
transition matrix P according to a derivation documented 
in (CHE, 80). 

R = P" (Ni, C) expresses the reliability of the software 
studied as a function of Rj and P;;. 

Application to the FCC, using a formal processing system 
(MAC, 77) makes it possible 

to determine which functions have the most adverse 
effect on the reliability of the whole by means of a 
sensitivity analysis ; 

-    to allocate the test effort according to the criticality 
of the functions ; 

to estimate the operational reliability. 

An illustration for the LONDON - AMSTERDAM route is 
given in table VI which shows the sensitivity coefficients 
of the various functions together with their resulting 
order of importance and the distribution of three test 
efforts. 
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SENSIBILITY 
DISTRIBCTION  OF.TEST  EFFORT 

K.    .0' N   -   10^ N.    .0- 

23^1 :2;33 75509 
1320 23011 115167 
1710 266 SO 13^366 
2J10 2bBiO 13^364 

(tt. fi39BO 
S 465 

7 

1 

U8680 
7267 

16313 
7230 

27 55833 
9 
1 

2'.667 
7337 

b 18697 

8 I579I 
3616 

8 A65 148660 

Table .VI 

An increase in reliability results from each test phase 
(and the associated debugging). 

After [0^ tests, the reliability expression is : 

R do'*, n) = 0.9992365 / (1 - 5.'H2962H.[0-'* . "- t) n 
n 

The expressions after 10^ and 10^ tests are respectively : 

R (105, n) = 0.9999229 / (1 - 0.0'f0195288 . n - 1) n 
n 

R (10^, n) = 0.9999S2S6 / (1 - 0.9982'*912 . n - I) n 
n 

Where n represents the number of new tests. 

The family of curves presented on Figure XIV represent 
the phenomenon of increasing reliability for five validation 
stages, making a total of 'fO x 10^ tests (close to the 
quantity applied to the FCC in conformance with Table 
III). We can notice a phenomenon of Software "hardening" 
in proportion to the debugging effort, up to a level which 
gives it satisfactory reliability. 

CONCLUSION 1. 

This    analysis    clearly    demonstrates    the    interest 
software quality measurement. 

of 

Although limited to certain basic phenomena, the 
evaluations presented make it possible to achieve the two 
objectives set out in paragraph 2 

the conditions of software regression as a function of 
the change requests can be measured and anticipated ; 
in particular, this makes it possible to adapt the 
validation effort : 

the    adequation    of    production    techniques 
constraints has been assessed : 

to    the 

the modification process is the critical point in 
the development cycle. For this type of 
application with a high modification intensity, 
flexibility must be one of the highest-priority 
criteria for software design ; 

the test strategy (individual tests, open - or 
closed - loop tests) defined by the project make 
it possible to achieve the objective at each 
stage, and has proved to be effective for 
eliminating the various errors ; 

the advantage of a reliability model in evaluating the 
design and distributing the test effort has been 
confirmed. 

Moreover, this analysis has demonstrated the interest of 
data collection in an industrial environment where 
production and quality requirements are extremely 
stringent. The most positive points that have been 
revealed are the efficiency of automated data collection 
in the modification phase and the sensitization of the 
development teams to the factors of quality. 

The benefits of such an analysis are a more objective 
awareness of performances, a development in methods 
and tools, and the desire to persevere with observation 
and measurement. 

1   I  Ml. :| lascs 

Figure XIV 
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FLIGHT TEST OF A RESIDENT BACKUP SOFTWARE SYSTEM 
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SUMMARY 

A new fault-tolerant system software concept employing the primary digital computers as host for the 
backup software portion has been implemented and flight tested in the F-8 digital fly-by-wire airplane. 
The system was implemented in such a way that essentially no transients occurred in transferring from 
primary to backup software. This was accomplished without a significant increase in the complexity of 
the backup software. The primary digital system was frame synchronized, which provided several advan- 
tages in implementing the resident backup software system. Since the time of the flight tests, two other 
flight vehicle programs have made a commitment to incorporate resident backup software similar in nature 
to the system described in this paper. 

NOMENCLATURE 

ADFRF 

CIP 

CLl 

CSDL 

DFBW 

DOWNLINK 

FAILl 

FAIL2 

FRR 

Ames-Dryden Flight Research Facility 

computer input panel software 

control law software (includes out- 
put commands) 

Charles Stark Draper Laboratory 

digital fly-by-wire 

data recording software 

location of first failure insertion 
point 

location of second failure insertion 
point 

flight readiness review 

IFU interface unit 

I/O input/output 

LED leading edge down 

LEU leading edge up 

Nz normal acceleration, g 

REBUS resident backup software 

RMl        redundancy management software 
(part 1) 

RM2        redundancy management software 
(part 2) 

SYNCH XLINK  synchronization and cross-link 
software 

INTRODUCTION 

Digital flight control system des 
ware errors for as long as digital fl 
to provide a dissimilar hardware back 
dissimilar hardware backup provides a 
software errors, it is a costly solut 
hardware assets. It also requires a 
active system and pass these commands 
disadvantages can be even greater bee 
digital and analog systems. This usu 

igners have been concerned 
ight control has been in e 
up control system, usually 
way of maintaining contro 
ion that fails to take adv 
redundant switching mechan 
to the redundant actuator 

ause of the need for senso 
ally means a separate set 

with protecting against "generic" soft- 
xistence. The standard approach has been 
analog in implementation. Although a 

1 of the aircraft in the event of generic 
antage of the unfailed primary system 
ism to accept system commands from the 
s. In the case of analog backups, the 
r inputs that are compatible with both 
of sensors are needed for each system. 

Several approaches have been advocated for handling software errors without requiring independent 
backup hardware. One approach is to utilize dissimilar software in each of the redundant hardware chan- 
nels. This approach has been used with success on the A310 airbus (Ref. 1). Although successful for 
that application, this approach results in a system with wider tolerances on the tracking between chan- 
nels that may have disadvantages in other applications. A second approach is to implement identical 
dissimilar software sets within each of the redundant hardware channels. This has been referred to by 
various names, the most common being "recovery blocks." The resident backup software (REBUS) described 

This paper is declared a work of the U.S. 
Government and therefore is in the public domain. 



9-2 

in this paper is of this second type. It has the advantage of minimizing hardware and retains the advan- 
tages of relatively tight tracking between the unfailed hardware channels. I 

Considerable debate has gone on concerning the amount of dissimilarity necessary to assure coverage 
for the generic software error. In this debate, a distinction is made between several classes of soft- 
ware errors and the amount of dissimilarity necessary for protection for each of these error classes. 

One class of generic error is the design error, in which the specified design is not adequate to 
handle the environment encountered in the actual application. As an example, the coupling between a 
structural mode and the aerodynamics is sufficiently different from that simulated in ground tests that 
the resulting closed loop through the control system becomes unstable. 

The second class of generic software error is the implementation error, which results in a system 
that does not meet the specified design. A particular difficulty concerns the latent system or software 
defect that goes undetected in testing but is exposed under certain environmental conditions experienced 
in flight. These implementation errors can occur at a number of different levels: in the algorithm 
chosen by the designer; in the way the software coder writes the source code; or in the compiler, which 
converts the source code to machine language. In every case, these errors would go undetected through- 
out ground testing and manifest themselves in an unsafe manner in actual flight. Implementation errors 
in the compiler are usually considered to be least likely; a compiler receives a considerable amount of 
implicit testing as a result of all the code that is generated and exposed to a wide range of conditions 
during the extensive verification and validation that are characteristic of man-rated digital fly-by- 
wire systems. 

Even when care is taken to assure dissimilarity for each level of implementation error, precautions 
must be taken to assure a successful transfer to the dissimilar software because of ttie nature of the 
digital computer and the unforeseeable consequences of a software error. This is most important during 
initialization of the dissimilar software because vehicle state data are needed to establish proper 
startup conditions. The danger exists that the software error in the primary system has caused con- 
tamination of the vehicle state data, thereby raising the possibility of initializing the backup software 
at an unsafe condition. 

Potential problems of this type have been of concern and have been some of the principal reasons 
that designers have chosen to use the better understood, albeit more expensive, analog backup. The 
flight experiment described in this paper was done to reduce the risk associated with backup software, 
with the hope that this more cost-effective method will be suitable for use in future flight control 
system designs. The experiment utilized the F-8 digital fly-by-wire (DFBW) airplane operated by the NASA 
Ames Research Center's Dryden Flight Research Facility (ADFRF) at Edwards, California. The system imple- 
mentation was accomplished by the Charles Stark Draper Laboratory (CSDL). 

FLIGHT EXPERIMENT OBJECTIVES 

The F-8 DFBW airplane is operated as a flight facility for evaluating new concepts, such as REBUS, in 
the real flight environment. One key step in preparing for a flight test is the independent review by 
people with broad operational experience in flight test. At ADFRF, this review process is called the 
flight readiness review (FRR). The value of evaluating a system or concept in flight is that the system 
will, by necessity, be subjected to close scrutiny and thorough testing to receive a favorable response 
from the FRR committee. It will also be subjected to the actual flight environment, which will be dif- 
ferent to some degree from that experienced in ground test. Those differences, and their effect on the 
system behavior, are important in understanding the concept under evaluation. 

These considerations contributed to the establishment of the experiment objective: to thoroughly 
evaluate a high-potential approach to fault-tolerant software utilizing a dissimilar software flight 
control system concept, subjecting it to all the processes necessary to qualify it for flight and vali- 
dating those processes through subsequent flight test. 

The REBUS concept was selected for evaluation because of its system-wide efficiency gained by 
utilizing the same computing hardware used by the primary system. 

F-8 DIGITAL FLY-BY-WIRE SYSTEM .; 

The F-8 DFBW airplane (Fig. 1) was modified by installing a fail-operate, fail-safe digital fly-by- 
wire system. (A detailed description of the system is presented in Ref. 2.) It is useful to provide 
some details in a simplified form to make explanations of the REBUS modifications easier. The DFBW 
system contains a triplex digital primary system with a triplex analog computer bypass system serving as 
its backup. Figure 2 illustrates the interface between the two systems. The triplex primary system uti- 
lizes redundant digital computers, and CSDL provided interface units (IFUs). Redundant aircraft motion 
sensors and pilot stick transducers are conneced to the IFUs. Surface commands are passed through an 
analog midvalue voter, with the midvalue of the three channels passed on to the servo drive electronics. 
This midvalue voter, being external to the digital computer, has additional analog circuitry that can 
declare any one of the digital output commands as failed and disable the particular channel output at the 
midvalue input plane. -      ■ 
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Analog Backup System 

The analog backup is a direct electrical link between the pilot's stick and the servo drive elec- 
tronics. The redundant commands are passed through the same midvalue select devices utilized by the 
primary system. This system, forward of the midvalue voter, is called the computer bypass system. 

Primary System 

The primary system is frame synchronized. This synchronism facilitates the exchange of data between 
computers and the input/output (I/O) function that distributes sensor information between computers, such 
that each receives a copy of all available sensor inputs. 

The primary software mechanizes a number of different control laws for the aircraft. They are the 
direct mode (control stick to surface actuator without any feedback) and stability augmentation system 
mode for the pitch, roll, and yaw axes. The pitch axis also contains the command augmentation system 
for further improvement in handling qualities. Finally, there are the standard autopilot modes of 
ai rcraft control. 

The input sensor set includes not only pilot stick and pedal sensors and vehicle motion sensors, but 
also information on surface commands and positions. In particular, the left and right elevator positions 
and the.last surface command to all five control surfaces are available in the input sensor buffer 
located external to the digital computers in the IFU. This control surface information is useful in the 
initialization of the REBUS software. 

The primary software contains a capability of recovering from transient errors. This capability 
(known as "restart") initializes the control laws after a potentially resettable failure has been indi- 
cated, and it attempts to recompute, anticipating that the failure will not reoccur. The software has 
been set up to recycle through the restart 10 times. If the failure still persists after 10 cycles, the 
channel declares a channel failure and is voted out by the remaining good channels. If one channel has 
already failed, the flight control system would be forced into the computer bypass system. 

Of the various conditions that can create a failure condition, two cause immediate failure declara- 
tions, and one (designated "execution error") is potentially resettable. These conditions are the 
following: 

1. Failure to perform an I/O function within 53 msec of the last I/O (the control law frame time is 
20 msec) 

2. Failure to update the watchdog timer 

3. Execution error for 10 consecutive program iterations or once every 6 iterations for 306 
iterations 

The reason for attempting 10 restarts before declaring a channel failure is the time duration that 
can be tolerated without a surface command update: For the F-8 aircraft with stable bare airframe, a 
300-msec time period can be tolerated; 10 restarts require between 100 and 300 msec, depending on 
where the failure indication occurs within the compute cycle. 

REBUS SYSTEM DESIGN 

Several tradeoffs must be made before specifying a system design. Many are similar to those made 
traditionally for an independent hardware backup. Issues such as complexity of the backup, criteria for 
automatic transfer, and interchannel synchronization must be addressed. Other issues that are specific 
to this experiment, in that an existing system was modified, will not be discussed. 

Complexity 

Selection of control laws is usually based on the minimum necessary to provide return to the base and 
safe landing capability. In the case of the F-8 DFBW aircraft, an unaugmented backup would be adequate 
to provide the necessary functionality. For this experiment, the decision was made to include slightly 
more capability than the bare minimum to better represent modern airplanes, which generally require 
augmentation to some degree. Three-axis fixed-gain rate damping was selected. Figure 3 illustrates, in 
the form of a block diagram, the pitch-axis stability augmentation system. As can be seen, there are 
several nonlinear functions, such as stick shaping and dead band. The only deviation from fixed gain is 
the selection of a landing approach gain set when the wing is put in the up position and the control sur- 
face authorities are modified.  (The standard F-8 aircraft provides for two wing-incidence positions, the 
wing-up position providing improved pilot visability during the landing approach.) The other axes are 
similar in complexity. 

The control law computation cycle could be mechanized quite simply by using a straight in-line code 
and very few branches. Many of the self-check functions, such as sensor redundancy management, could 
also be eliminated to reduce complexity. The overall complexity was reduced considerably relative to the 
primary system. For example, the REBUS software required less than one-tenth the memory that the primary 
software required. The compute cycle was selected to be 50 samples per second, the same as that of the 
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primary system (for convenience, in that it reduced the amount of separate stability analysis and valida- 
tion necessary). 

Transfer Criterion 

A criterion was needed for automatic transfer to backup, assuming that a generic software error could 
cause a situation requiring action sooner than the pilot can react. The appropriate solution was to use 
the channel failure declaration, which is based on repeated self-execution error indication. Failures to 
execute while in the control law code are representative of the failure mode for which the backup soft- 
ware was intended, in that the system behaves in the way that a generic software failure would be 
expected to manifest itself. 

It is desirable to minimize transients that occur upon transfer to backup if this does not contribute 
to increased complexity or other undesirable effects. Given that the system failure has occurred because 
of a generic software error, one must also assume that there is a finite probability that the record of 
the aircraft state as maintained in the memory of the system computers has been degraded by the failure. 
Therefore, one must look elsewhere for the information required to initialize the backup software. 

The only information that the backup software needs to take control of the aircraft without intro- 
ducing an objectionable transient in aircraft state is the current position of the aircraft control sur- 
faces. This allows for some small transients that result from reinitialization of any active filters and 
changes in loop gains from state-dependent to fixed values. 

Three assumptions were made relative to initialization of the REBUS software: 

1. Primary software failure occurs simultaneously in at least two channels of the system. 

2. The trigger mechanism generates simultaneous pulses for at least two channels of the system. 

3. At least two channels simultaneously execute the input sensor I/O function. 

Given these assumptions, the backup software can be initialized to the aircraft's existing control 
surface commands, and thus it generates no transient other than that due to gain changes. This is 
possible because the simultaneous performance of the initial input sensor I/O function by the computers 
enables them to receive a full complement of sensor signals, that is, not only their own dedicated set 
but those dedicated to other computers. 

Return to Primary 

A major issue for any backup system designer is whether return to primary should be allowed. If the 
primary system has suffered a major fault, then it must be assumed that transferring back to that defec- 
tive system is unsafe. On the other hand, if the backup software is not providing a controllable 
airplane, the pilot may want to try the primary software in a last-ditch effort. Thus, both sides of the 
issue could be argued without reaching a clear resolution. For an experimental system such as the F-8 
REBUS, it is desirable to transfer into backup even though no serious problem exists with the primary. 
For test purposes, it is highly desirable to be able to transfer back and forth at will during a given 
flight. For these reasons, provisions were included in REBUS and the F-8 DFBW primary system for 
transfer back to primary from REBUS. 

Interchannel Synchronization 

Since the primary synchronization algorithm is a software function, the REBUS must provide a dissimi- 
lar synchronization algorithm if a synchronized backup system is to be established. The dangers asso- 
ciated withnot being able to synchronize upon transfer to REBUS must be considered. Also, the additional 
complexity associated with synchronization makes it less desirable from a system complexity standpoint. 
For these reasons, it was decided to establish REBUS as an asynchronous system. This decision has 
several ramifications (such as, no exchange of data between computers can be performed because of the 
complexity of adding an asynchronous data transfer capability). 

Sensor cross-trapping is used in the primary system to ensure that each channel operates on identical 
data. With the asynchronous approach in the REBUS, each computer must operate on dedicated sensors that 
are independent of the operation of the other computers. Because of this interchannel independence, it 
is of interest in both ground and flight tests to see how much variation develops between each channel. 

IMPLEMENTATION 

The specific details of the REBUS implementation were strongly dependent on the peculiarities of the 
F-8 DFBW system. Some functions were included in the total modified DFBW system because it was a flight 
experiment and it was required that tests be performed easily. These details include the triggering 
mechanism, the approach to simulating software errors, and the status of the computer bypass system. 
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REBUS Triggering 

The failure detection logic in the primary system causes the generation of a discrete output from 
the computer channel that is indicating a failure. This discrete output is processed by external cir- 
cuitry unique to each channel computer. This circuitry sets a channel failure indicator, which is 
then passed to the other channels. This discrete was convenient for use as the trigger generator; 
therefore, a circuit that voted the discrete output from each computer was constructed for each chan- 
nel. If two of three computers would generate a discrete, the trigger pulse would be produced for that 
channel. Figure 4 illustrates the relative location of the added hardware including a switching card 
in the IFU and a transfer circuit external to the computer. Also shown is the REBUS memory in the pri- 
mary digital computer. 

This trigger pulse must be introduced into the computer to initiate the execution of the backup soft- 
ware. The pulse could not enter as some external interrupt, for the computer could fail in such a way 
that all interrupts would be masked. The only "interrupt" that would be recognized by the computer at 
any time and under any conditions was the system reset. 

Each channel has its own trigger circuit. This mechanization provides protection against inadvertent 
switching of the system from primary software to backup software. Two of three computers must be 
generating a channel fail to produce the trigger pulse. If a particular trigger circuit fails and 
generates a pulse when none is commanded, only that channel's computer switches to backup, and any 
discrepancy between its outputs and the other computers' outputs will be voted out by the external mid- 
value voters. Failure to generate a pulse when one is commanded will not prevent the other two computers 
from switching to backup software. 

Software Programming 

Ideally, it would have been desirable to have people other than those involved in primary software 
development mechanize the backup software. Also, it would have been advisable to use software develop- 
ment tools different than those used for the primary software. Neither one of these steps for enhanced 
dissimilarity were used for this experiment because of the added time and cost associated with them. 
There would have been no way to evaluate the effects of these additional steps within the limited scope 
of this experiment, so it was not deemed necessary to include this additional expense. 

Simulation of Errors 

For the purposes of this experiment, a simulated generic software error was needed. Several types of 
generic software failures were studied as to how they would manifest themselves as apparent hardware 
failures. It was apparent that a generic software failure that would be of sufficient severity to bring 
the primary system down would be such that a restart would result. This can be simulated by adding an 
instruction to write to a protected portion of memory. Segments of memory can be protected from being 
written to. Thus, the simulation of a generic software error was implemented by including a pilot- 
selectable branch in software that included a write instruction into a protected portion of memory. 
Several different points within the control law code were selected for error insertion. The error 
insertion function was subject to an arming device, also pilot selectable. 

Computer Bypass 

Since the unmodified F-8 DFBW already had a backup provided by the computer bypass system, the 
question arose as to whether the computer bypass function should be removed when the REBUS was added. 
Retaining the computer bypass would be in effect a backup on a backup. However, a strong argument 
existed for not removing it because of the reliability record of the specific prototype primary computers 
available to the F-8 program. With the computer bypass system, the total system hardware reliability is 
adequate for safe operation. Thus, the computer bypass system was retained for its contribution to hard- 
ware reliability. 

GROUND TESTS 

An important step in evaluating the REBUS system was the F-8 Ironbird simulator, which utilizes a 
decommissioned F-8 aircraft with a complete DFBW system installed. The aerodynamics are simulated in a 
general-purpose simulation computer. The specialized hardware necessary for the REBUS was implemented in 
brassboard versions of the interface units. 

Part of the ground tests was the determination of transfer transients for a number of failure inser- 
tion points within the control law code. The only significant difference was whether the failure was 
inserted before or after the actuator command output. Figure 5 illustrates the situation for a typical 
20-msec control compute cycle. The end of CLl (control law software module) represents the point at 
which the actuator output command occurs. The first failure insertion point is represented by FAILl (at 
the end of RMl, the first part of the sensor redundancy management software module). Other software 
modules include SYNCH XLINK, which performs the synchronization cross-link, RM2, which is the second part 
of redundancy management, and DOWNLINK and CIP, which process the data recording and the pilot's computer 
input panel, respectively. Another failure insertion point was FAIL2, representative of a failure 
occurring after the surface output commands. As in the ground tests, if the failure occurred prior to 
the surface command update, such as at FAILl, the aircraft sustained a longer period of time without 
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surface commands, and the backup software was initialized with relatively old aircraft state information. 
Depending on the aircraft motion at the time of the failure, the transient on transfer varied. In no 
case was the transient considered severe. 

The time period with no control, between 240 and 300 msec, is a function of the amount of time the 
primary system is allowed to attempt to correct itself. Figure 6 shows (in a simplified form) how a 
fault occurring at the end of DOWNLINK and CIP would be repeated through 10 attempts to restart while 
still in the primary system. For this case, the transfer time was 294 msec. For the F-8 aircraft, this 
time period is short enough that it does not cause any control problem. For other airplanes, the 
allowable time period may be much shorter, in which case a smaller value for the failure counter should 
be selected, assuring controllability; however, this will diminish the system's tolerance of transient 
failures that can be withstood without transfer to the backup. 

FLIGHT TESTS 

At the ADFRF flight readiness review (FRR), most of the details of the design and the results from 
the ground tests were reviewed without significant comment. There was one major concern raised that may 
have implications for others. This concerned the plans for enabling the REBUS after safely at altitude. 
The FRR committee questioned the advisability of taking off the first time with the REBUS enabled. The 
committee felt that the system should not be enabled until a safe altitude was achieved. The committee 
also raised a question as to the expected transient if the system was forced to REBUS at liftoff, given 
that the REBUS was enabled. It was finally determined that the more conservative approach was to wait 
until a safe altitude was achieved before enabling the system. 

Once the FRR committee approved the plans, the flight experiment began. The first flight was on 
23 July 1984. A summary of the flights is presented in Table 1. The emphasis of the experiment was on 
comparing flight with simulation. This included the tracking between channels, transfer transients, 
susceptibility to unwanted transfers, and general operational factors. ,.. 

The tracking between channels was very close. At no time during the flight tests did drifts occur 
between the three channels. This was in agreement with the simulation runs conducted prior to flight. 

The transfer transients were negligible, even when occurring during elevated-g maneuvers. In most 
cases, the transfer to REBUS could not be detected in the control surface traces. Figure 7 shows a typi- 
cal time response in the pitch axis, which illustrates the excellent performance for a transfer during a 
3.5-g turn. 

There were no unwanted transfers encountered during the flight tests. This was to be expected 
because the transfer mechanism was the same as had been used to cause a transfer to computer bypass in all 
the previous flfght tests with the F-8 DFBW airplane. There had never been a transfer to computer bypass 
over an eight-year period of flight testing. 

From an operational standpoint, no significant concerns arose. Evaluation of the handling qualities 
for the REBUS control laws was included under operational assessment. Two pilots evaluated the system, 
evaluating it as acceptable for emergency operations and preferable to the computer bypass mode. 

EXTENSION OF CONCEPT TO OTHER APPLICATIONS 

The experience gained with the F-8 REBUS flight experiment has raised some issues relative to future 
applications. Many of the recommendations that could be made apply to dissimilar backup systems in 
general. We will restrict the comments here to issues applicable only to resident software backups. 

Much of the REBUS design was dependent on the synchronous nature of the primary system. If the pri- 
mary system were asynchronous, it would be valuable for initializing the REBUS to have all surface posi- 
tions available in the input data set. 

Concepts similar to REBUS have already been incorporated into the designs for other flight applica- 
tions. The X-wing rotorcraft program (Ref. 3) utilizes a jam-transfer software backup that is nearly the 
same as REBUS. The F-16C and D aircraft with digital fly-by-wire systems will have resident software 
backups in the primary system memories. . , 

CONCLUSIONS I 

The F-8 resident backup software (REBUS) flight experiment has demonstrated a cost-effective approach 
to providing dissimilar redundancy to protect against generic software failures. The major findings are 
as follows: 

1. Resident backup software that provides protection for primary software errors can be implemented. 

2. Transients that occur during transfer from primary to backup can be minimized with little impact 
on system complexity. 
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3, Independent reviewers with broad operational background in flight test can be satisfied that 
resident software backups offer adequate assurance of flight safety. „  , 

Recent incorporation of backup software approaches similar to REBUS into the designs of upcoming 
flight vehicles, coupled with the successful results from this flight experiment, offers evidence 
that this concept will find industry-wide acceptance as a viable solution to the generic software 
error problem. 
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Table 1. REBUS FLIGHT SUMMARY 

Number of flights in REBUS   6 
Total flight time for these 6 flights 6 h 50 min 
Total flight time in REBUS 3 h 54 min 
Number of transfers to REBUS 22 
Number of transfers to primary   18 
Number of transfers at >1 g 6 
Highest g level at REBUS transfer   3.5 g 
Number of low approaches in REBUS   6 
Number of touch and gos in REBUS 10 
Number of landings in REBUS   5 

ECN 3312 

Figure 1.    F-8 digital fly-by-wire airplane. 
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